【總結】一、由邊際函數求原函數二、由變化率求總量第八節(jié)定積分的經濟應用三、收益流的現值和將來值一、由邊際函數求原函數25()7Cxx???0()(0)()dxCxCCxx????0251000(7)dxxx????例1已知邊際成本為,固
2025-08-21 12:42
【總結】2021/11/10海軍航空工程學院應用數學研究所時寶微積分的發(fā)展?Archimedes→Newton和Leibniz(1900多年)2021/11/10海軍航空工程學院應用數學研究所時寶微積分的發(fā)展?微積分學是微分學和積分學的總稱??陀^世界的一切事物,小至粒子,大至宇宙,始終都在運動和變化著。因此在數學中引入變量的概念后,就有可
2025-01-04 09:08
【總結】曲率是描述曲線局部性質(彎曲程度)的量。1M3M2??2M2S?1S?MM?1S?2S?NN???弧段彎曲程度越大,轉角越大.轉角相同,弧段越短,彎曲程度越大一、平面曲線的曲率概念1??第十一節(jié)曲線的曲率??????S?S)?.M?.MC0Myxo.s
2025-04-21 04:19
【總結】特點:)(0xf?)(0xf??第七節(jié)泰勒公式一、泰勒公式的建立)(xfxy)(xfy?o))(()(000xxxfxf????以直代曲0x)(1xp在微分應用中已知近似公式:需要解決的問題如何提高精度?如何估計誤差?xx的一次多項式
2025-08-01 16:25
【總結】1微積分基本公式問題的提出積分上限函數及其導數牛頓—萊布尼茨公式小結思考題作業(yè)(v(t)和s(t)的關系)★☆☆fundamentalformulaofcalculus第4章定積分與不定積分2通過定積分的物理意義,例變速直線運動中路
2025-02-21 10:32
【總結】第一節(jié)數列極限的定義和性質一、數列極限的定義定義:依次排列的一列數??,,,,21nxxx稱為無窮數列,簡稱數列,記為}{nx.其中的每個數稱為數列的項,nx稱為通項(一般項).例如;,2,,8,4,2??n;,21,,81,41,21??n}2{
2025-01-19 08:23
【總結】第四節(jié)高階導數引例:變速直線運動),(tss?)()(tstv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tstvta定義.)())((,)()(lim))((,)()(0處的二階導數在點為函數則稱存在即處可導在點的導數如果函數xxfxfxxfxxfxf
2025-04-21 04:25
【總結】第二節(jié)求導法則一、和、差、積、商的求導法則定理并且可導處也在點分母不為零們的和、差、積、商則它處可導在點如果函數,)(,)(),(xxxvxu).0)(()()()()()(])()([)3();()()()(])()([)2();()(])()([)1(2????????????
2025-04-21 03:39
【總結】§數列極限第二章極限與連續(xù)本章是微積分的基礎,主要討論函數的極限與函數的連續(xù)性。??,,,,,321naaaa稱為數列,記為na其中稱為數列的通項或一般項;??na正整數n稱為的下標。na例如:;,2,,8,4,2??n}2{n;,1,,1,1,1
2025-08-05 06:53
【總結】;)()(任意小表示AxfAxf????.的過程表示???xXx.0sin)(,無限接近于無限增大時當xxxfx?問題:如何用數學語言刻劃函數“無限接近”.第二節(jié)函數極限的定義和性質一、自變量趨向無窮大時函數的極限XX???A??Aoxy)(xfy?A定義1.設函數大于某一正數時有定義,若
2025-07-22 11:10
【總結】一、概念的引入§2.數列的極限我們在緒論中講到:我們利用階梯形的面積來逼近曲邊三角形的面積(見下頁演示).硯恢陪楔灰橡妒豪棠淪講焰墩爽賭篡愈甸竅包舌客鞠秀萄象限慣矣例班掙微積分86751微積
2025-01-20 05:31
【總結】1多元函數的微積分主要內容:一.多元函數的概念二.二元函數的極限和連續(xù)三.偏導數的概念及簡單計算四.全微分五.空間曲線的切線與法平面六.曲面的切平面與法線七.多元函數的極值2設D是平面上的一個點集.如果對于每個點P(x,y)?D,變量z按照一定法則總有確定的值和它對應,
2025-04-28 23:40
【總結】備考基礎·查清熱點命題·悟通遷移應用·練透課堂練通考點課下提升考能首頁上一頁下一頁末頁結束數學第十二節(jié)定積分與微積分基本定理1.定積分的概念第十二節(jié)定積分與微積分基本定理在????abf(x)dx中,
2024-11-23 12:12
【總結】微積分基本定理(79)31、變速直線運動問題變速直線運動中路程為21()dTTvtt?設某物體作直線運動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數,且0)(?tv,求物體在這段時間內所經過的路程.另一方面這段路程可表示為)()(12TsTs?原函數存在
2024-12-08 00:51
【總結】微積分初步輔導老師:劉丹鳳工作單位:岳陽電大課程的性質與任務《微積分初步》是計算機和數控專業(yè)的一門必修的重要基礎課程,通過本課程的學習,使學生對一元函數微分、積分有初步認識和了解,使學生初步掌握微積分的基本知識、基本理論和基本技能,并逐步培養(yǎng)學生邏輯推理能力、自學能力,較熟練的運算能力和綜合運用所學知識分析問題、解決問題的能力
2025-01-19 21:35