【總結(jié)】排列組合二項式定理、概率統(tǒng)計、導數(shù)講課人:呂梁高中孟雪梅一排列組合二項式定理(一)解讀《考試大綱》分類計數(shù)原理與分步計數(shù)原理.排列.排列數(shù)公式.組合.組合數(shù)公式.組合數(shù)的兩個性質(zhì).二項式定理.二項展開式的性質(zhì).掌握分類計數(shù)原理與
2025-01-07 11:52
【總結(jié)】.公式P是指排列,從N個元素取R個進行排列。公式C是指組合,從N個元素取R個,不進行排列。N-元素的總個數(shù)R參與選擇的元素個數(shù)!-階乘,如????9?。?*8*7*6*5*4*3*2*1從N倒數(shù)r個,表達式應(yīng)該為n*(n-1)*(n-2)..(n-r+1);?????&
2025-07-26 05:35
【總結(jié)】 排列組合專題復習及經(jīng)典例題詳解1.學習目標掌握排列、組合問題的解題策略(1)特殊元素優(yōu)先安排的策略:(2)合理分類與準確分步的策略;(3)排列、組合混合問題先選后排的策略;(4)正難則反、等價轉(zhuǎn)化的策略;(5)相鄰問題捆綁處理的策略;(6)不相鄰問題插空處理的策略.綜合運用解題策略解決問題.:(1)知識梳理1.分類計數(shù)原理(加法原理
2025-04-17 01:31
【總結(jié)】數(shù)學廣角排列組合嘉峪關(guān)市新城中心小學:贠吉芳?一、教學內(nèi)容?課本第99頁知識?二、教學目標?1、通過觀察、猜測、操作等活動吧,學會最簡單的排列和組合。?2、經(jīng)歷探索簡單事物的排列和組合規(guī)律的過程。?3、培養(yǎng)血紅色呢過有順序地全面地思考問題的意識。?4、感受數(shù)學與生活的緊密聯(lián)系,激發(fā)學生
2025-07-19 17:40
【總結(jié)】公式P是指排列,從N個元素取R個進行排列。公式C是指組合,從N個元素取R個,不進行排列。N-元素的總個數(shù)R參與選擇的元素個數(shù)!-階乘,如????9!=9*8*7*6*5*4*3*2*1從N倒數(shù)r個,表達式應(yīng)該為n*(n-1)*(n-2)..(n-r+1);?????
2025-07-26 06:15
【總結(jié)】排列組合公式/排列組合計算公式排列P------和順序有關(guān)組合C-------不牽涉到順序的問題排列分順序,組合不分例如把5本不同的書分給3個人,有幾種分法."排列"把5本書分給3個人,有幾種分法"組合"1.排列及計算公式從n個不同元素中,任取m(m≤n)個元素按照一定的順序排成一列
2025-08-05 07:21
【總結(jié)】范文范例參考排列組合公式/排列組合計算公式排列P------和順序有關(guān)??組合C-------不牽涉到順序的問題排列分順序,組合不分例如把5本不同的書分給3個人,有幾種分法."排列"把5本書分給3個人,有幾種分法"組合"1.排列及計算公式
2025-06-25 22:59
【總結(jié)】專業(yè)資料整理分享一.基本原理1.加法原理:做一件事有n類辦法,則完成這件事的方法數(shù)等于各類方法數(shù)相加。2.乘法原理:做一件事分n步完成,則完成這件事的方法數(shù)等于各步方法數(shù)相乘。注:做一件事時,元素或位置允許重復使用,求方法數(shù)時常用基本原理求解。二.排列:從n
2025-06-27 22:56
【總結(jié)】從n個元素中抽取m(m≦n)個元素的排列,可以看作先從n個元素中抽取m個進行組合,再對m個元素進行全排列.)!(!!!)1()2)(1(mnmnmmnnnnAACmmmnmn?????????高中部11個班進行籃球單循環(huán)比賽,需要進行多少場比賽?從全
2024-11-10 06:54
【總結(jié)】基本原理組合排列排列數(shù)公式組合數(shù)公式組合數(shù)性質(zhì)應(yīng)用問題基礎(chǔ)知識1:知識結(jié)構(gòu)網(wǎng)絡(luò)圖復習名稱內(nèi)容分類原理分步原理定義相同點不同點做一件事或完成一項工作的方法數(shù)直接(分類
2024-11-11 02:53
2024-11-18 08:07
【總結(jié)】數(shù)學廣角之排列組合主講田村中心小學劉勝門票5元可以怎樣付錢?門票5元門票5元門票5元門票5元門票5元有幾種穿法?1234每兩個人進行一場比賽,一共要比幾場?買一個拼音本,可以怎樣付錢?
2024-12-13 17:38
【總結(jié)】WORD格式可編輯排列組合方法篇1、兩個原理及區(qū)別(加法原理)(乘法原理)2、排列數(shù)公式排列數(shù)公式==.(,∈N*,且).注:規(guī)定.排列恒等式(1);(2).會推以下恒等式(1);(2);(3);(4)
2025-08-05 07:38
2024-11-19 08:50
【總結(jié)】排列組合專題訓練1.(2014?四川)六個人從左至右排成一行,最左端只能排甲或乙,最右端不能排甲,則不同的排法共有( ) A.192種B.216種C.240種D.288種考點:排列、組合及簡單計數(shù)問題.菁優(yōu)網(wǎng)版權(quán)所有專題:應(yīng)用題;排列組合.分析:分類討論,最左端排甲;最左端只排乙,最右端不能排甲,根據(jù)加法原理可得結(jié)論.
2025-08-05 07:27