【總結(jié)】[拋物線的幾何性質(zhì)]范圍對稱性頂點離心率基本元素一、拋物線的范圍,y2=2px?x?0?y取全體實數(shù)xy二、拋物線的對稱性,y2=2px?關(guān)于x軸對稱?沒有對稱中心,因此,拋物線又叫做無心圓錐曲線。而橢圓?和雙曲線又叫?
2024-11-18 00:34
【總結(jié)】課題拋物線的簡單幾何性質(zhì)授課班級高二(5)班時間2020年11月30日講課人司寶柱教學(xué)目標(biāo)[知識與技能]1、拋物線的幾何性質(zhì)、范圍、對稱性、定點、離心率。.2、會利用拋物線的幾何性質(zhì)求解一些簡單的題型。[過程與方法]1、使學(xué)生掌握拋物線的幾何
2024-11-23 13:15
【總結(jié)】2020/12/16拋物線的幾何性質(zhì)范圍對稱性頂點離心率基本元素2020/12/16平面內(nèi)與一個定點F和一條定直線l的距離相等的點的軌跡叫做拋物線。定點F叫做拋物線的焦點。定直線l叫做拋物線的準(zhǔn)線。一、拋物線的定義即:︳︳︳︳·
2025-10-31 09:20
【總結(jié)】高中數(shù)學(xué)《拋物線》練習(xí)題一、選擇題:1.(浙江)函數(shù)y=ax2+1的圖象與直線y=x相切,則a=()(A)(B)(C)(D)12.(上海)過拋物線的焦點作一條直線與拋物線相交于A、B兩點,它們的橫坐標(biāo)之和等于5,則這樣的直線()A.有且僅有一條B.有且僅有兩條C.有無窮多條D.不存在3.
2025-04-04 05:12
【總結(jié)】拋物線的簡單幾何性質(zhì)【學(xué)習(xí)目標(biāo)】掌握拋物線的范圍、對稱性、頂點、離心率等幾何性質(zhì).【自主學(xué)習(xí)】根據(jù)拋物線的標(biāo)準(zhǔn)方程)0(22??ppxy,研究它的幾何性質(zhì):1.范圍2.對稱性3.頂點4.離心率拋物線上的點M與焦點的距離和它到準(zhǔn)線的距離的比,叫做拋物線的離心率,用e表示.由拋物線的定義可知,
2024-12-05 06:40
【總結(jié)】課時作業(yè)(十三)一、選擇題1.已知點P(6,y)在拋物線y2=2px(p0)上,若點P到拋物線焦點F的距離等于8,則焦點F到拋物線準(zhǔn)線的距離等于( )A.2B.1C.4D.8【解析】 拋物線y2=2px(p0)的準(zhǔn)線為x=-,因為P(6,y)為拋物線上的點,所以點P到焦點F的距離等于它到準(zhǔn)線的距離,所以6+=8,所以p=4,即焦點F到拋物線的距離
2025-03-25 02:27
【總結(jié)】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)拋物線的幾何性質(zhì)課后知能檢測蘇教版選修1-1一、填空題1.對拋物線x2=-3y,下列說法正確的是________.①此拋物線關(guān)于y軸對稱;②焦點坐標(biāo)為(0,34);③此拋物線與拋物線x2=3y關(guān)于x軸對稱.【解析】拋物線x2=-
2024-12-04 18:02
【總結(jié)】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)拋物線的幾何性質(zhì)課后知能檢測蘇教版選修2-1一、填空題1.設(shè)拋物線的頂點在原點,準(zhǔn)線方程為x=-2,則拋物線的方程是________.【解析】∵p2=2,∴p=4,∴拋物線標(biāo)準(zhǔn)方程為y2=8x.【答案】y2=8x2.經(jīng)過拋物線y2=2px(
2024-12-05 09:29
【總結(jié)】拋物線的標(biāo)準(zhǔn)方程復(fù)習(xí)提問:平面內(nèi)到一個定點F的距離和它到一條定直線l的距離的比是常數(shù)e的動點M的軌跡.(直線l不經(jīng)過點F)·MFl0<e<1lF·Me>1(1)當(dāng)0<e<1時,點M的軌跡是什么?(2)當(dāng)e>1時,點M的軌
2024-11-18 08:47
【總結(jié)】范文范例參考圓錐曲線第3講拋物線【知識要點】1、拋物線的定義平面內(nèi)到某一定點的距離與它到定直線()的距離相等的點的軌跡叫拋物線,這個定點叫做拋物線的焦點,定直線叫做拋物線的準(zhǔn)線。注1:在拋物線的定義中,必須強調(diào):定點不在定直線上,否則點的軌跡就不是一個拋物線,而是過點且垂直于直線的一條直線。注2:拋物線的定義也可以說成是:平面內(nèi)到某一定點
2025-04-04 05:15
【總結(jié)】§拋物線的幾何性質(zhì)設(shè)計人:趙軍偉審定:數(shù)學(xué)備課組【學(xué)習(xí)目標(biāo)】,并能從拋物線的標(biāo)準(zhǔn)方程出發(fā),推導(dǎo)這些性質(zhì).,推導(dǎo)拋物線的性質(zhì),從而培養(yǎng)學(xué)生分析、歸納、推理等能力【學(xué)習(xí)重點】理解并掌握拋物線的幾何性質(zhì)【學(xué)習(xí)難點】能從拋物線的標(biāo)準(zhǔn)方程出發(fā),推導(dǎo)這些性質(zhì)【知識銜接
2024-12-08 17:46
【總結(jié)】拋物線標(biāo)準(zhǔn)方程及幾何性質(zhì)問題情境拋物線的生活實例拋球運動平面內(nèi)與一個定點F和一條定直線l的距離相等的點的軌跡叫做拋物線。一、定義的軌跡是拋物線。則點若MMNMF,1?即:︳︳︳︳··FMlN定點F叫做拋物線的焦
2025-08-15 22:22
【總結(jié)】拋物線及其標(biāo)準(zhǔn)方程(一)城郊中學(xué):代俊俊拋物線的生活實例探照燈的燈面平面內(nèi)與一個定點F和一條定直線l的距離相等的點的軌跡叫做拋物線。注1定點F叫做拋物線的焦點。2定直線L叫做拋物線的準(zhǔn)線3點F在直線外(若點在直線上呢?)一拋物線的定義的軌跡是
2024-11-17 15:04
【總結(jié)】最值問題的最小值的距離到直線上的點例:求拋物線01543P42????yxxyP043:???byxl設(shè))34(42byy???代入拋物線,得:316048160416322??????????bbbyy整理得:152943|31615|22min?????d的最小
2025-04-29 02:44
【總結(jié)】拋物線的簡單幾何性質(zhì)(1)【學(xué)習(xí)目標(biāo)】1.掌握拋物線的幾何性質(zhì);2.根據(jù)幾何性質(zhì)確定拋物線的標(biāo)準(zhǔn)方程.【重點難點】拋物線的幾何性質(zhì)【學(xué)習(xí)過程】一、自主預(yù)習(xí)P70,文P60~P61找出疑惑之處)復(fù)習(xí)1:準(zhǔn)線方程為x=2的拋物線的標(biāo)準(zhǔn)方程是.復(fù)習(xí)2:雙曲線22
2024-12-05 06:47