【總結(jié)】安徽理工大學(xué)畢業(yè)論文本科畢業(yè)論文關(guān)于均值不等式的探討DISCUSSIONONINEQUALITY學(xué)院(部):理學(xué)院專業(yè)班級(jí):數(shù)學(xué)與應(yīng)用數(shù)學(xué)07-1學(xué)生姓名:吳興奎指導(dǎo)教師:周小紅講師
2025-08-05 04:52
【總結(jié)】第一篇:均值不等式的證明 均值不等式的證明 設(shè)a1,a2,a3...an是n個(gè)正實(shí)數(shù),求證(a1+a2+a3+...+an)/n≥n次√(a1*a2*a3*...*an).要簡(jiǎn)單的詳細(xì)過程,謝謝!...
2024-11-05 22:00
【總結(jié)】第一篇:均值不等式及其應(yīng)用 教師寄語:一切的方法都要落實(shí)到動(dòng)手實(shí)踐中 高三一輪復(fù)習(xí)數(shù)學(xué)學(xué)案 均值不等式及其應(yīng)用 一.考綱要求及重難點(diǎn) 要求:(?。海y度為中低檔題,.考點(diǎn)梳理 a+:3;...
2024-10-27 10:26
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修5《基本不等式-均值不等式》審校:王偉教學(xué)目標(biāo)?推導(dǎo)并掌握兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個(gè)重要定理;利用均值定理求極值。了解均值不等式在證明不等式中的簡(jiǎn)單應(yīng)用。?教學(xué)重點(diǎn):?推導(dǎo)并掌握兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個(gè)重要定
2025-08-04 10:01
2025-08-04 09:13
【總結(jié)】第一篇:均值不等式的應(yīng)用 均值不等式的應(yīng)用 教學(xué)目標(biāo): 教學(xué)重點(diǎn):應(yīng)用教學(xué)難點(diǎn):應(yīng)用 教學(xué)方法:講練結(jié)合教 具:多媒體教學(xué)過程 一、復(fù)習(xí)引入: ,平均不等式:調(diào)和平均數(shù)≤幾何平均數(shù)≤...
2024-10-27 19:15
【總結(jié)】第一篇:均值不等式教學(xué)設(shè)計(jì) 教學(xué)目標(biāo) (一)知識(shí)與技能:明確均值不等式及其使用條件,能用均值不等式解決簡(jiǎn)單的最值問題.(二)過程與方法:通過對(duì)問題主動(dòng)探究,實(shí)現(xiàn)定理的發(fā)現(xiàn),體驗(yàn)知識(shí)與規(guī)律的形成...
2024-10-27 19:23
【總結(jié)】均值不等式應(yīng)用(技巧)一.均值不等式1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(3)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”);若,則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”
2025-07-23 23:59
【總結(jié)】課題:基本不等式科目:數(shù)學(xué)教學(xué)對(duì)象:高一學(xué)生課時(shí):1課時(shí)提供者:李文毅單位:大同四中一、教學(xué)內(nèi)容分析?本節(jié)課《基本不等式》是《數(shù)學(xué)必修五(人教A版)》第三章第四節(jié)的內(nèi)容,主要內(nèi)容是通過現(xiàn)實(shí)問題進(jìn)行數(shù)學(xué)實(shí)驗(yàn)猜想,構(gòu)造數(shù)學(xué)模型,得到均值不等式;并通過在學(xué)習(xí)算術(shù)平均數(shù)與幾何平均數(shù)的定義基礎(chǔ)上,理解均值不等式的幾何解釋;,對(duì)于不等式的證明及利用均值不等式求
2025-04-17 00:20
【總結(jié)】案例:“均值不等式”復(fù)習(xí)課的設(shè)計(jì)教學(xué)要求:系統(tǒng)復(fù)習(xí)均值不等式及其等價(jià)式、特例式,使學(xué)生領(lǐng)會(huì)其中“≥”或“≤”中取“”的充要條件,掌握放縮不等式的相關(guān)配湊技巧,并培養(yǎng)學(xué)生的探究精神與心智素質(zhì)。教學(xué)重點(diǎn):熟練運(yùn)用均值不等式及其推論放縮不等式。教學(xué)難點(diǎn):求函數(shù)表達(dá)式與最值時(shí),“≥”或“≤”中“”成立的條件。教學(xué)過程、知識(shí)聯(lián)系(如下框圖)對(duì)于個(gè)正數(shù)而言,積定
2025-04-17 04:53
【總結(jié)】......一、選擇題1.若,且,那么的最小值為(???)A.B.C.D.2.設(shè)若的最小值( )A.
2025-03-25 00:08
【總結(jié)】第一篇:均值不等式說課稿 說課題目:高中數(shù)學(xué)人教B版必修第三章第二節(jié) -------均值不等式(1) 一、本節(jié)內(nèi)容的地位和作用 均值不等式又叫做基本不等式,選自人教B版(必修5)的第3章的2節(jié)...
2024-11-05 17:55
【總結(jié)】......第三節(jié):基本不等式1、基本不等式:(1)如果a、b是正數(shù),那么(當(dāng)且僅當(dāng)a=b時(shí)取“=”)(2)對(duì)基本不等式的理解:a>0,b>0,a,b的算術(shù)平均數(shù)是a+b/2,幾何平均數(shù)是_________
2025-06-24 04:49
【總結(jié)】課堂例題設(shè)計(jì)應(yīng)注重“低起點(diǎn)、高觀點(diǎn)、高目標(biāo)”——均值不等式復(fù)習(xí)課的例題設(shè)計(jì)XX省XX中學(xué)【理論指導(dǎo)】:“低起點(diǎn)、高觀點(diǎn)、高目標(biāo)”的指導(dǎo)方針。“低起點(diǎn)”要求:從基礎(chǔ)知識(shí)入手,即從能反映該學(xué)科領(lǐng)域最基本、最核心
2025-08-01 19:30
【總結(jié)】第一篇:淺談均值不等式的教學(xué) 數(shù)理 淺談均值不等式的教學(xué) 岳陽縣第四中學(xué)楊偉 均值不等式是高中數(shù)學(xué)新教材第六章教學(xué)的重點(diǎn),也是難點(diǎn),它是證明不等式、解決求最值問題的重要工具,它的應(yīng)用范圍幾乎涉...
2024-11-06 07:26