【總結(jié)】選校網(wǎng)高考頻道專業(yè)大全歷年分?jǐn)?shù)線上萬(wàn)張大學(xué)圖片大學(xué)視頻院校庫(kù)2011數(shù)學(xué)同步測(cè)試—不等式的證明一、選擇題(本大題共10小題,每小題5分,共50分)1.四個(gè)不相等的正數(shù)a,b,c,d成等差數(shù)列,則 ()A. B. C. D.2.綜合法證明不等式中所說(shuō)的“由因?qū)Ч笔侵笇で笫共坏仁匠闪⒌? ( )A.必要條件 B.充分條件 C.充要條件 D
2024-08-29 16:51
【總結(jié)】第一篇:不等式的多種證明方法 不等式的多種證明方法汪洋,合肥師范學(xué)院 摘要:數(shù)學(xué)是生活中的一門自然科學(xué),而不等式則是構(gòu)成這門自然科學(xué)的眾多基礎(chǔ)中相當(dāng)重要的組成之一,因此本文專門介紹不等式的各種證明...
2024-10-29 00:24
【總結(jié)】-1-20xx年高考數(shù)學(xué)基礎(chǔ)強(qiáng)化訓(xùn)練題—《不等式》一、選擇題:本大題共12小題,每小題5分,共60分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.1.設(shè),aR?b,已知命題:pab?;命題222:22ababq?????????,則p是q成立的()A.必要不充分條件
2024-08-06 10:15
【總結(jié)】第一篇:不等式證明的若干方法 不等式證明的若干方法 摘要:無(wú)論是在初等數(shù)學(xué)還是在高等數(shù)學(xué)中,,高等數(shù)學(xué)中不等式證明的常用方法有利用函數(shù)的單調(diào)性、Cauchy不等式、中值定理、泰勒公式、Jensen...
2024-10-28 22:36
【總結(jié)】第一篇:均值不等式的證明方法 柯西證明均值不等式的方法byzhangyuong(數(shù)學(xué)之家) 本文主要介紹柯西對(duì)證明均值不等式的一種方法,這種方法極其重要。一般的均值不等式我們通??紤]的是An3Gn...
2024-10-27 15:16
【總結(jié)】數(shù)列不等式證明的幾種方法數(shù)列和不等式都是高中數(shù)學(xué)重要內(nèi)容,這兩個(gè)重點(diǎn)知識(shí)的聯(lián)袂、交匯融合,更能考查學(xué)生對(duì)知識(shí)的綜合理解與運(yùn)用的能力。這類交匯題充分體現(xiàn)了“以能力立意”的高考命題指導(dǎo)思想和“在知識(shí)網(wǎng)絡(luò)交匯處”設(shè)計(jì)試題的命題原則。下面就介紹數(shù)列不等式證明的幾種方法,供復(fù)習(xí)參考。一、巧妙構(gòu)造,利用數(shù)列的單調(diào)性例1.對(duì)任意自然數(shù)n,求證:。證明:構(gòu)造數(shù)列。所以,即為單調(diào)遞增數(shù)列
2024-08-01 16:02
【總結(jié)】第一篇:不等式的證明方法探究 不等式的證明方法探究 不等式的證明是高中數(shù)學(xué)的一個(gè)難點(diǎn),題型較多,涉及的知識(shí)面多,證明方法靈活,本文通過(guò)一些實(shí)例,歸納總結(jié)了證明不等式時(shí)常用的方法和技巧。 1.比較...
2024-10-28 23:37
【總結(jié)】第一篇:2013高考數(shù)學(xué)均值不等式專題 均值不等式歸納總結(jié) ab£(a+b 2)£2a+b 222(當(dāng)且僅當(dāng)a=b時(shí)等號(hào)成立) (1)當(dāng)兩個(gè)正數(shù)的積為定值時(shí),可以求它們的和的最小值,當(dāng)兩個(gè)正...
2024-10-27 07:47
【總結(jié)】知識(shí)改變命運(yùn),學(xué)習(xí)成就未來(lái)第1頁(yè)共6頁(yè)十一、不等式一、選擇題1.(重慶理7)已知a>0,b>0,a+b=2,則y=14ab?的最小值是A.72B.4C.92D.5【答案】C2.(浙江理5)設(shè)實(shí)數(shù),xy滿足不等式組2
2024-08-24 10:40
【總結(jié)】不等式的證明復(fù)習(xí)回顧雙向溝通練習(xí)總結(jié)數(shù)學(xué)組馬迪證明不等式的主要依據(jù)1a-b0ab,a-b0ab2不等式的性質(zhì)
2024-08-14 18:16
【總結(jié)】第一篇:基本不等式的證明 重要不等式及其應(yīng)用教案 教學(xué)目的 (1)使學(xué)生掌握基本不等式a2+b2≥2ab(a、b∈R,當(dāng)且僅當(dāng)a=b時(shí)取“=”號(hào))和a3+b3+c3≥3abc(a、b、c∈R+,...
2024-10-27 20:07
【總結(jié)】第一篇:證明不等式的基本方法一 證明不等式的基本方法一 ------比較法 教學(xué)目的: 以不等式的等價(jià)命題為依據(jù),揭示不等式的常用證明方法之一——比較法,要求學(xué)生能教熟練地運(yùn)用教學(xué)重點(diǎn):比較法...
2024-11-03 22:04
【總結(jié)】不等式的證明松北高級(jí)中學(xué)吳宏亮【例1】已知a0,b0,求證:a3+b3≥a2b+ab2.(課本P12例3)即a3+b3≥a2b+ab2.證明一:比較法(作差)(a3+b3)-(a2b+ab2)=(a3-a2b)+(b3-ab2)=a2(a-b)+b2(b-a)
2024-11-10 05:07
【總結(jié)】第一篇:sos方法證明不等式 數(shù)學(xué)競(jìng)賽講座 SOS方法證明不等式(sumofsquares) S=A-B=Sa(b-c)+Sb(c-a)+Sc(a-b)30 性質(zhì)一:若Sa,Sb,Sc30,則...
2024-10-28 23:36
【總結(jié)】第一篇:證明不等式方法探析 §1不等式的定義 用不等號(hào)將兩個(gè)解析式連結(jié)起來(lái)所成的式子。在一個(gè)式子中的數(shù)的關(guān)系,不全是等號(hào),含 sinx£1,ex>0,2x<3,5x15不等符號(hào)的式子,+2y32...
2024-11-15 06:26