【摘要】第一篇:不等式證明,均值不等式 1、設(shè)a,b?R,求證:ab3(ab)+aba+b23abba2、已知a,b,c是不全相等的正數(shù),求證:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc...
2024-11-03 17:10
【摘要】第一篇:不等式證明的幾種方法 不等式證明的幾種方法 劉丹華 余姚市第五職業(yè)技術(shù)學(xué)校 摘要:不等式的證明可以采用不同的方法,每種方法具有一定的適用性,并有一定的規(guī)律可循。通過對不等式證明方法和例...
2024-10-28 23:03
【摘要】實(shí)際問題不等關(guān)系不等式一元一次不等式一元一次不等式組不等式的性質(zhì)解不等式解集解集解集數(shù)軸表示數(shù)軸表示數(shù)軸表示解法解法實(shí)際應(yīng)用一,基本概念:1,不等式:2,不等號:3,不等式的解:4,不等式的解集:5,解不等式:6,一元一次不等式:
2024-11-10 02:28
【摘要】基本不等式學(xué)習(xí)目標(biāo)?學(xué)習(xí)目標(biāo):理解一元二次不等式的概念及其與二次函數(shù)、一元二次方程的關(guān)系。初步樹立“數(shù)形結(jié)合次函數(shù)、一元二次方程的關(guān)系。?學(xué)法指導(dǎo):發(fā)現(xiàn)、討論法;數(shù)形結(jié)合。”的觀念。掌握一元二次不等式的解法及步驟。?學(xué)習(xí)重點(diǎn)、難點(diǎn):一元二次不等式、二次函數(shù)、一元二次方程的關(guān)系;一元二次不等式的解法及
2024-11-23 11:40
【摘要】不等式的證明與解法(復(fù)習(xí)課)1、比較法(1)比較法證明不等式的步驟作差---變形---判斷符號----得出結(jié)論(2)比較法經(jīng)常證明什么樣的不等式高次整式多項(xiàng)式、所證不等式兩邊有相同或局部相同的部分(3)作差之后變形的思維完全平方、因式積一、不
2024-11-06 21:52
【摘要】河南師范大學(xué)本科畢業(yè)論文重慶師范大學(xué)本科畢業(yè)論文 學(xué)號:20080511757用高等數(shù)學(xué)知識求函數(shù)極限的探究學(xué)院名稱:數(shù)學(xué)學(xué)院專業(yè)名稱:數(shù)學(xué)與應(yīng)用數(shù)學(xué)年級班別:2008級4班姓名:朱興杭指導(dǎo)教師:張
2025-08-21 15:17
【摘要】精品資源證明不等式的幾種常用方法證明不等式除了教材中介紹的三種常用方法,即比較法、綜合法和分析法外,在不等式證明中,不僅要用比較法、綜合法和分析法,根據(jù)有些不等式的結(jié)構(gòu),恰當(dāng)?shù)剡\(yùn)用反證法、換元法或放縮法還可以化難為易.下面幾種方法在證明不等式時(shí)也經(jīng)常使用.一、反證法如果從正面直接證明,有些問題確實(shí)相當(dāng)困難,容易陷入多個(gè)元素的重圍之中,而難以自拔,此時(shí)可考慮用間接法予以證明,反證法
2025-04-08 04:10
【摘要】第一篇:導(dǎo)數(shù)證明不等式的幾個(gè)方法 導(dǎo)數(shù)證明不等式的幾個(gè)方法 1、直接利用題目所給函數(shù)證明(高考大題一般沒有這么直接)已知函數(shù)f(x)=ln(x+1)-x,求證:當(dāng)x-1時(shí),恒有 1-1£ln(...
2024-10-28 01:40
【摘要】第一篇:不等式的證明方法 中原工學(xué)院常用方法 (作差法)[1] 在比較兩個(gè)實(shí)數(shù)a和b的大小時(shí),:作差——變形——判斷(正號、負(fù)號、零).變形時(shí)常用的方法有:配方、通分、因式分解、和差化積、應(yīng)用已...
2024-10-28 21:51
【摘要】第一篇:證明不等式的方法論文 證明不等式的方法 李婷婷 摘要:在我們數(shù)學(xué)學(xué)科中,不等式是十分重要的內(nèi)容。如何證明不等式呢?在本文中,我主要介紹了不等式概念、基本性質(zhì)和一些從初等數(shù)學(xué)中總結(jié)出的證明...
2024-11-03 22:04
【摘要】第一篇:證明不等式的幾種常用方法 證明不等式的幾種常用方法 摘要:不等式由于結(jié)構(gòu)形式的多樣化化,證明方式也是靈活多樣,但都是圍繞著比較法、綜合法、、:不等式證明;比較法;綜合法;分析法 引言:不...
2024-10-29 06:39
【摘要】不等式的證明——分析法證明不等式重要不等式:比較法之一(作差法)步驟:作差——變形——判斷與0的關(guān)系——結(jié)論學(xué)過的證明方法:比較法之二(作商法)步驟:作商——變形——判斷與1的關(guān)系——結(jié)論綜合法:利用某些已經(jīng)證明過的不等式(例如算術(shù)平均
2024-11-07 02:26
【摘要】不等式的證明(二)一、不等式的證明1、比較法(1)比較法證明不等式的步驟(2)比較法經(jīng)常證明什么樣的不等式(3)作差之后變形的思維2、綜合法(1)定義(2)綜合法經(jīng)常證明什么樣的不等式(3)綜合法經(jīng)常證明不等式時(shí)經(jīng)常用到:(1)a2≥
2024-11-06 15:49
【摘要】立足教育開創(chuàng)未來·高中總復(fù)習(xí)(第一輪)·理科數(shù)學(xué)·全國版1第六章不等式第講立足教育開創(chuàng)未來·高中總復(fù)習(xí)(第一輪)·理科數(shù)學(xué)·全國版2考點(diǎn)搜索●應(yīng)用均值不等式求最值●應(yīng)用不等式求范圍●不等式
2025-08-20 08:58
【摘要】立足教育開創(chuàng)未來·高中總復(fù)習(xí)(第一輪)·理科數(shù)學(xué)·全國版1第六章不等式第講(第一課時(shí))立足教育開創(chuàng)未來·高中總復(fù)習(xí)(第一輪)·理科數(shù)學(xué)·全國版2考點(diǎn)搜索●一元一次不等式的解法●一元二次不等式的