【總結(jié)】第一篇:不等式證明[精選] §14不等式的證明 不等式在數(shù)學中占有重要地位,由于其證明的困難性和方法的多樣性,,而變形的依據(jù)是不等式的性質(zhì),不等式的性分類羅列如下:不等式的性質(zhì):a3b?a-b0...
2024-11-08 22:00
【總結(jié)】第一篇:導數(shù)證明不等式 導數(shù)證明不等式 一、當x1時,證明不等式xln(x+1) f(x)=x-ln(x+1) f'(x)=1-1/(x+1)=x/(x+1) x1,所以f'(x)0...
2024-10-26 09:50
【總結(jié)】第一篇:不等式的證明 學習資料 教學目標 (1)理解證明不等式的三種方法:比較法、綜合法和分析法的意義; (2)掌握用比較法、綜合法和分析法來證簡單的不等式; (3)能靈活根據(jù)題目選擇適當?shù)?..
2024-10-28 23:51
【總結(jié)】高二數(shù)學(必修五)多媒體課件基本不等式的證明【問題1】把一個物體放在天平的一個盤子上,在另一個盤子上放砝碼使天平平衡,稱得物體的質(zhì)量為,天平的兩臂長略有不同(其它因素不計),那么并非實際質(zhì)量.不過,我們可作第二次測量:把物體調(diào)換到天平的另一盤上,此時稱得物體的質(zhì)量為的質(zhì)量呢?:
2025-08-05 03:53
【總結(jié)】第一篇:證明不等式方法 不等式的證明是高中數(shù)學的一個難點,題型廣泛,涉及面廣,證法靈活,錯法多種多樣,本節(jié)通這一些實例,歸納整理證明不等式時常用的方法和技巧。1比較法 比較法是證明不等式的最基本方...
2024-10-29 04:53
【總結(jié)】第一篇:不等式的證明 復習課:不等式的證明 教學目標 (1).理解絕對值的幾何意義并能用其證明不等式和解絕對值不等式.(2).了解數(shù)學歸納法的使用原理.(3).會用數(shù)學歸納法證明一些簡單問題...
【總結(jié)】不等式的證明(二)高三備課組反證法:從否定結(jié)論出發(fā),經(jīng)過邏輯推理,導出矛盾,證實結(jié)論的否定是錯誤的,從而肯定原結(jié)論是正確的證明方法。換元法:換元法是指結(jié)構(gòu)較為復雜、量與量之間關(guān)系不很明了的命題,通過恰當引入新變量,代換原題中的部分式子,簡化原有結(jié)構(gòu),使其轉(zhuǎn)化為便于研究的形式。用換元法證明不等式時一定要注意新元的約
2025-07-24 02:36
【總結(jié)】第六章不等式、推理與證明第1課時不等關(guān)系與不等式目錄考綱展示備考指南會從實際情境中抽象出一元二次不等式模型,不等關(guān)系、不等式的性質(zhì)及應用是命題的熱點.的靈活運用,有時與充要性的判斷交匯命題,體現(xiàn)了化歸轉(zhuǎn)化思想,難度為中、低檔.、填空題.2021高考導航本節(jié)目錄教材回顧
2025-05-10 15:23
【總結(jié)】不等式證明——分析法?教學目標1.掌握分析法證明不等式;2.理解分析法實質(zhì)——執(zhí)果索因;3.提高證明不等式證法靈活性.?教學重點分析法?教學難點分析法實質(zhì)的理解導入新課[問題1]我們已經(jīng)學習了哪幾種不等式的證明方法?什么是比較法?什么是綜合法?[問題2]能否用比較法或綜
2025-08-05 01:24
【總結(jié)】思考1思考2復習引入練習答案作業(yè):課本54P6題數(shù)學歸納法證明不等式數(shù)學歸納法證明不等式(即n=n0第一個命題對應的n的值,如n0=1)(歸納奠基);n=k時命題成立,證明當n=k+1時命題也成立(歸納遞推).數(shù)學歸納法:關(guān)于正整數(shù)n的命題(相當于多米諾骨牌
2024-11-21 01:17
【總結(jié)】不等式和不等式組錢旭東淮安市啟明外國語學校蘇科版義務教育課程標準實驗教科書九年級復習課回顧·知識一元一次不等式(組)的應用一元一次不等式(組)的解法一元一次不等式(組)解集的含義一元一次不等式(組)的概念不等式的性質(zhì)一元一次不等式和一元一次不等式組回顧·知識:含
2024-10-12 13:38
【總結(jié)】4、排序不等式(一)概念【9】:設有兩組實數(shù)(1)(2)滿足(3)(4)另設(5)是實數(shù)組(
2025-06-25 22:56
【總結(jié)】第一篇:構(gòu)造函數(shù)證明不等式 構(gòu)造函數(shù)證明不等式 構(gòu)造函數(shù)證明:e的(4n-4)/6n+3)次方 不等式兩邊取自然對數(shù)(嚴格遞增)有: ln(2^2/2^2-1)+ln(3^2/3^2-1)+...
2024-10-31 14:46
【總結(jié)】第一篇:向量法證明不等式 向量法證明不等式 高中新教材引入平面向量和空間向量,將其延伸到歐氏空間上的n維向量,向量的加、減、,則高中階段的向量即為n=2,,b是歐氏空間的兩向量,且a=(x1,x2...
2024-11-05 17:00
【總結(jié)】第一篇:均值不等式的證明 均值不等式的證明 設a1,a2,a3...an是n個正實數(shù),求證(a1+a2+a3+...+an)/n≥n次√(a1*a2*a3*...*an).要簡單的詳細過程,謝謝!...
2024-11-05 22:00