freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

不等式的證明(編輯修改稿)

2024-11-08 22:00 本頁面
 

【文章內(nèi)容簡介】 14n1,a2,a5,a14構(gòu)成等比數(shù)列.(1)證明:a2=(2)求數(shù)列{an}的通項公式;an=2n1(3)證明:對一切正整數(shù)n,有11++a1a2a2a3+11. anan+12{an}=1,2Sn12=an+1n2n,n206。N*.n33(Ⅰ)求a2的值;a2=4(Ⅱ)求數(shù)列{an}的通項公式;an=n2(Ⅲ)證明:對一切正整數(shù)n,有數(shù)學歸納法證明不等式16.(本小題滿分12分)若不等式11++n+1n+2+1a對一切正整數(shù)n都成立,求正3n+12411++a1a2+17.an4整數(shù)a的最大值,并證明結(jié)論.25:.第四篇:不等式證明經(jīng)典金牌師資,笑傲高考2013年數(shù)學VIP講義【例1】 設(shè)a,b∈R,求證:a2+b2≥ab+a+b1?!纠?】 已知0【例3】 設(shè)A=a+d,B=b+c,a,b,c,d∈R+,ad=bc,a=max{a,b,c,d},試比較A與B的大小。因A、B的表達形式比較簡單,故作差后如何對因式進行變形是本題難點之一。利用等式ad=bc,借助于消元思想,至少可以消去a,b,c,d中的一個字母。關(guān)鍵是消去哪個字母,因條件中已知a的不等關(guān)系:ab,ac,ad,故保留a,消b,c,d中任一個均可。由ad=bc得:d=bca1+ab+bc+caa+b+c+abc≥1。bca=bc=ab+(ab)(ac)a0bcacaAB=a+d(b+c)=a+ =ab c(ab)a【例4】 a,b,c∈R,求證:a4+b4+c4≥(a+b+c)。不等號兩邊均是和的形式,利用一次基本不等式顯然不行。不等號右邊為三項和,根據(jù)不等號方向,應(yīng)自左向右運用基本不等式后再同向相加。因不等式左邊只有三項,故把三項變化六項后再利用二元基本不等式,這就是“化奇為偶”的技巧。左=12(2a4+2b224+2c)=22412[(a24+b)+(b22244+c)+(c2244+a)]24≥12(2ab+2bc+2ca)=ab+bc+ca2發(fā)現(xiàn)縮小后沒有達到題目要求,此時應(yīng)再利用不等式傳遞性繼續(xù)縮小,處理的方法與剛才類似。中天教育咨詢電話:04768705333第1頁/共9頁 金牌師資,笑傲高考ab=12122013年數(shù)學VIP講義22+bc2222+ca2222=212(2ab2222+2bc2222+2ca)22+ca)+(ca2[(ab+bc)+(bc22+ab)]22≥(2abc+2abc2+2abc)=ab(a+b+c)1a+1c+【例5】(1)a,b,c為正實數(shù),求證:+(2)a,b,c為正實數(shù),求證:a21bb2≥c21ab+1bc+1ac;b+c+a+ca+b≥a+b+c2。(1)不等式的結(jié)構(gòu)與例4完全相同,處理方法也完全一樣。(2)同學們可試一試,再用剛才的方法處理該題是行不通的。注意到從左向右,分式變成了整式,可考慮在左邊每一個分式后配上該分式的分母,利用二元基本不等式后約去分母,再利用不等式可加性即可達到目的。試一試行嗎?a2b+cb2+(b+c)≥2a2b+cb2(b+c)=2aa+cc2+(a+c)≥2a+c(a+c)=2ba+b+(a+b)≥2c2a+b(a+b)=2c相加后發(fā)現(xiàn)不行,a,b,c的整式項全消去了。為了達到目的,應(yīng)在系數(shù)上作調(diào)整。a2b+c+b+c4≥a,b2a+c+a+c4≥b,c2a+b+a+b4≥a 相向相加后即可。【例6】 x,y為正實數(shù),x+y=a,求證:x+y≥2a22。思路一;根據(jù)x+y和x2+y2的結(jié)構(gòu)特點,聯(lián)想到算術(shù)平均數(shù)與平方平均數(shù)之間的不等關(guān)系。∵ x+y22≤2x2+y222∴ x+y≥(x+y)2=a22思路二:因所求不等式右邊為常數(shù),故可從求函數(shù)最小值的角度去思考。思路一所用的是基本不等式法,這里采用消元思想轉(zhuǎn)化為一元函數(shù),再用單調(diào)性求解。換元有下列三種途徑:途徑1:用均值換元法消元: 令 x=2a2+m,y=aa22m22則 x+y=(+m)+(m)=2m+222aa22≥a22途徑2:代入消元法: y=ax,0a2)2+a22≥a22中天教育咨詢電話:04768705333第2頁/共9頁 金牌師資,笑傲高考途徑3:三角換元法消元:令 x=acos2θ,y=asin2θ,θ∈(0,]2p2013年數(shù)學VIP講義則 x2+y2=a2(cos4θ+sin4θ)=a2[(sin2θ+cos2θ)22sin2θcos2θ]=a[12(sin2θ)]=a(12212212sin2θ)≥a22注:為了達到消元的目的,途徑1和途徑3引入了適當?shù)膮?shù),也就是找到一個中間變量表示x,y。這種引參的思想是高中數(shù)學常用的重要方法?!纠?】 已知ab0,求證:(ab)8a2a+b2ab(ab)8b2。12所證不等式的形式較復(fù)雜(如從次數(shù)看,有二次,一次,次等),難以從某個角度著手。故考慮用分析法證明,即執(zhí)果索因,尋找使不等式成立的必要條件。實際上就是對所證不等式進行適當?shù)幕?、變形,實際上這種變形在相當多的題目里都是充要的。a+b2ab=a+b2ab2b)(a(a+=(a2b)2ab=(a+b)b)(a8a2所證不等式可化為∵ ab0 ∴ ab ∴ ab0b)2(a2b)2(a+b)(a8b2b)2∴ 不等式可化為:(a+4ab)21(a+4bb)22236。239。(a+b)4a即要證237。2239。238。4b(a+b)236。239。a+b2a只需證237。239。2ba+b238。在ab0條件下,不等式組顯然成立 ∴ 原不等式成立 【例8】 已知f(x)=24xx+3+8,求證:對任意實數(shù)a,b,恒有f(a),采用常規(guī)方法難以著手。根據(jù)表達式的特點,借助于函數(shù)思想,可分別求f(a)及g(b)=b24b+f(a)=112的最值,看能否通過最值之間的大小關(guān)系進行比較。=82(2)a2a24aa+3+8+8=2a8+82a≤282a=82a842=2令 g(b)=b24b+11232 ≥32 g(b)=(b2)2+中天教育咨詢電話:04768705333第3頁/共9頁 金牌師資,笑傲高考∵ 3222013年數(shù)學VIP講義∴ g(b)f(a)注:本題實際上利用了不等式的傳遞性,只不過中間量為常數(shù)而已,這種思路在兩數(shù)大小比較時曾講過。由此也說明,實數(shù)大小理論是不等式大小理論的基礎(chǔ)。【例9】 已知a,b,c∈R,f(x)=ax2+bx+c,當|x|≤1時,有|f(x)|≤1,求證:(1)|c|≤1,|b|≤1;(2)當|x|≤1時,|ax+b|≤2。這是一個與絕對值有關(guān)的不等式證明題,除運用前面已介紹的不等式性質(zhì)和基本不等式以外,還涉及到與絕對值有關(guān)的基本不等式,如|a|≥a,|a|≥a,||a||b||≤|a177。b|≤|a|+|b|,|a1177。a2177。?177。an|≤|a1|+|a2|+?+|an|。就本題來說,還有一個如何充分利用條件“當|x|≤1時,|f(x)|≤1”的解題意識。從特殊化的思想出發(fā)得到: 令 x=0,|f(0)|≤1 即 |c|≤1 當x=1時,|f(1)|≤1;當x=1時,|f(1)|≤1 下面問題的解決試圖利用這三個不等式,即把f(0),f(1),f(1)化作已知量,去表示待求量?!?f(1)=a+b+c,f(1)=ab+c ∴ b=12[f(1)f(1)] 12|f(1)f(1)|≤12[|f(1)|+|f(1)|]≤12(1+1)
點擊復(fù)制文檔內(nèi)容
電大資料相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1