【總結(jié)】第一篇:八年級(jí)幾何證明1 八年級(jí)幾何證明精選 一、基礎(chǔ)題: 1、在ΔABC中,a,b,c分別是∠A,∠B,∠C的對(duì)邊,且∠A=60°,其三邊a,b,c滿足下列關(guān)a-b-c2系,、在ΔABC中,A...
2024-11-16 03:17
【總結(jié)】第一篇:幾何證明題訓(xùn)練 仁家教育---您可以相信的品牌! 仁家教育教案 百川東到海,何時(shí)復(fù)西歸? 少壯不努力,老大徒傷悲。 您的理解與支持是我們前進(jìn)最大的動(dòng)力!1 您的理解與支持是我們前進(jìn)...
2024-10-21 22:32
【總結(jié)】第一篇:幾何證明題練習(xí) 幾何證明題練習(xí) ,Rt△ABC中AB=AC,點(diǎn)D、E是線段AC上兩動(dòng)點(diǎn),且AD=EC,AM⊥BD,垂足為M,AM的延長線交BC于點(diǎn)N,直線BD與直線NE相交于點(diǎn)F。試判斷△...
2024-10-27 12:16
【總結(jié)】第一篇:幾何證明題(難) 附加題: 1、已知:如圖,△ABC中,AG⊥BC于點(diǎn)G,以A為直角頂點(diǎn),分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點(diǎn)E、F作射線GA的...
2024-10-21 22:37
【總結(jié)】第一篇:幾何證明題大全 幾何證明題 ,BD,CE是邊AC,AB上的中點(diǎn),BD與CE相交于點(diǎn)O,BO與OD的長度有什么關(guān)系?BC邊上的中線是否一定過點(diǎn)O?為什么? 答題要求:請(qǐng)寫出詳細(xì)的證明過程,...
2024-10-22 00:16
【總結(jié)】1過兩點(diǎn)有且只有一條直線2兩點(diǎn)之間線段最短3同角或等角的補(bǔ)角相等4同角或等角的余角相等5過一點(diǎn)有且只有一條直線和已知直線垂直6直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短7平行公理經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行9同位角相等,兩直線平行10內(nèi)錯(cuò)角相等,兩直線平行
2024-08-14 03:51
【總結(jié)】第一篇:高中幾何證明題 高中幾何證明題 如圖,在長方體ABCD-A1B1C1D1中,點(diǎn)E在棱CC1的延長線上,且CC1=C1E=BC=1/2AB=1.(1)求證,D1E//平面ACB1 (2)求...
2024-10-22 22:06
【總結(jié)】如圖,在△ABC中,點(diǎn)O是AC邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)O不與A、C兩點(diǎn)重合),過點(diǎn)O作直線MN∥BC,直線MN與∠BCA的平分線相交于點(diǎn)E,與∠DCA(△ABC的外角)的平分線相交于點(diǎn)F.(1)OE與OF相等嗎?為什么?(2)探究:當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?并證明你的結(jié)論.(3)在(2)中,當(dāng)∠ACB等于多少時(shí),四邊形AECF為正方形.(不要求說理由)
2025-04-04 03:25
【總結(jié)】第一篇:初中幾何證明題 (1)如圖,在三角形ABC中,BD,CE是高,F(xiàn)G分別為ED,BC的中點(diǎn),O是外心,求證AO∥FG問題補(bǔ)充: 證明:延長AO,交圓O于M,連接BM,則:∠ABM=90°,且...
2024-10-24 21:41
【總結(jié)】第一篇:幾何證明題方法 (初中、高中)幾何證明題一些技巧 初中幾何證明技巧(分類) 證明兩線段相等 。 。 。 。 。 。 。 。*(或等圓)中等弧所對(duì)的弦或與圓心等距的兩弦或等...
2024-10-27 15:56
【總結(jié)】初二上證明題0011.如圖,DE∥BC,∠D+∠B=180°.求證:AB∥CD.2.如圖,AB∥CD,GH分別與AB、CD相交于點(diǎn)E、F,EM平分∠AEG,F(xiàn)N平分∠CFG.求證:EM∥FN.3.如圖,OB=BC,OC平分∠AOB.求證:AO∥BC.4.B如圖,AB∥CD,∠A+∠E=∠AM
2025-03-24 12:38
【總結(jié)】空間幾何證明A1ED1C1B1DCBA1、如圖,在正方體中,是的中點(diǎn),求證:平面。2、已知中,面,,求證:面.3、正方體中,求證:(1);4、正方體ABCD—A1B1C1D1中.(1)求證
2025-03-25 06:42
【總結(jié)】第一篇:八年級(jí)全等三角形經(jīng)典證明題 三角形全等的判定專題訓(xùn)練題 1、如圖(1):AD⊥BC,垂足為D,BD=CD。求證:△ABD≌△ACD。 2、如圖(2):AC∥EF,AC=EF,AE=BD。...
2024-10-25 07:42
【總結(jié)】.七年級(jí)數(shù)學(xué)幾何證明題,在ABC中,D在AB上,且ΔCAD和ΔCBE都是等邊三角形,求證:(1)DE=AB,(2)∠EDB=60° ,在ΔABC中,AD平分∠BAC,DE||AC,EF⊥AD交BC延長線于F。求證:∠FAC=∠B ,如圖,在△ABC中,AD,AE
2024-08-14 03:06
【總結(jié)】第一篇:中考幾何證明題復(fù)習(xí) 中考復(fù)習(xí) (二)中考復(fù)習(xí):幾何證明題 說明一:在直角三角形中,或是題中出現(xiàn)多個(gè)直角時(shí),要證明兩個(gè)角相等,涉及到的知識(shí)點(diǎn): 同角(或等角)的余角相等。 例1:已知:...
2024-10-15 17:33