【摘要】幾何證明題的技巧1.幾何證明是平面幾何中的一個(gè)重要問題,它有兩種基本類型:一是平面圖形的數(shù)量關(guān)系;二是有關(guān)平面圖形的位置關(guān)系。這兩類問題常??梢韵嗷マD(zhuǎn)化,如證明平行關(guān)系可轉(zhuǎn)化為證明角等或角互補(bǔ)的問題。2.掌握分析、證明幾何問題的常用方法:(1)綜合法(由因?qū)Ч?,從已知條件出發(fā),通過有關(guān)定義、定理、公理的應(yīng)用,逐步向前推進(jìn),直到問題解決;(2)分析法(執(zhí)果索因)從
2025-07-03 04:28
【摘要】......八年級(jí)幾何全等證明題歸納,梯形ABCD中,AD∥BC,∠DCB=45°,BD⊥CD.過點(diǎn)C作CE⊥AB于E,交對(duì)角線BD于F,點(diǎn)G為BC中點(diǎn),連接EG、AF.求證:CF=AB+AF.證明:在線段CF上截取CH
2025-04-02 02:14
【摘要】平行四邊形2.已知:如圖,AB=CD,BC=DA,AE=CF.求證:BF=DE.3.在ABCD中,E、F分別在DC、AB上,且DE=BF。求證:四邊形AFCE是平行四邊形。4.如圖所示,四邊形ABCD是平行四邊形,且∠EAD=∠BAF。1求證:ΔCEF是等腰三角形;②觀察圖形,ΔCEF的哪兩邊之和恰好等于ABCD的周長(zhǎng)?并說明理
2025-04-13 03:30
【摘要】八年級(jí)數(shù)學(xué)復(fù)習(xí)之幾何證明題的技巧1.幾何證明是平面幾何中的一個(gè)重要問題,它有兩種基本類型:一是平面圖形的數(shù)量關(guān)系;二是有關(guān)平面圖形的位置關(guān)系。這兩類問題常??梢韵嗷マD(zhuǎn)化,如證明平行關(guān)系可轉(zhuǎn)化為證明角等或角互補(bǔ)的問題。2.掌握分析、證明幾何問題的常用方法:(1)綜合法(由因?qū)Ч瑥囊阎獥l件出發(fā),通過有關(guān)定義、定理、公理的應(yīng)用,逐步向前推進(jìn),直到問題解決;(2)分析
【摘要】八年級(jí)數(shù)學(xué)復(fù)習(xí)之幾何證明題的技巧1.幾何證明是平面幾何中的一個(gè)重要問題,它有兩種基本類型:一是平面圖形的數(shù)量關(guān)系;二是有關(guān)平面圖形的位置關(guān)系。這兩類問題常??梢韵嗷マD(zhuǎn)化,如證明平行關(guān)系可轉(zhuǎn)化為證明角等或角互補(bǔ)的問題。2.掌握分析、證明幾何問題的常用方法:(1)綜合法(由因?qū)Ч?,從已知條件出發(fā),通過有關(guān)定義、定理、公理的應(yīng)用,逐步向前推進(jìn),直到問題解決;(2)分析
2025-07-03 04:25
【摘要】全等幾何證明(1) 如圖,已知點(diǎn)D為等腰直角△ABC內(nèi)一點(diǎn),∠CAD=∠CBD=15°.E為AD延長(zhǎng)線上的一點(diǎn),且CE=CA,求證:AD+CD=DE;全等幾何證明(2) 如圖,在正方形ABCD中,F(xiàn)是CD的中點(diǎn),E是BC邊上的一點(diǎn),且AF平分∠DAE,求證:AE=EC+CD.
2025-04-13 03:29
【摘要】八年級(jí)幾何證明專題訓(xùn)練1.如圖,已知△EAB≌△DCE,AB,EC分別是兩個(gè)三角形的最長(zhǎng)邊,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度數(shù).2.如圖,點(diǎn)E、A、B、F在同一條直線上,AD與BC交于點(diǎn)O,已知∠CAE=∠DBF,AC=:∠C=∠D,OP平分∠AOB,且OA
【摘要】第一篇:八年級(jí)數(shù)學(xué)幾何題證明技巧 能達(dá)培訓(xùn)學(xué)校內(nèi)部資料 能達(dá)學(xué)校八年級(jí)數(shù)學(xué)講義 姓名:日期:2006-1-2 4輔助線的添加技巧 人說幾何很困難,難點(diǎn)就在輔助線。輔助線,如何添?把握定理和概...
2024-11-09 00:50
【摘要】1.已知:如圖,點(diǎn)E、G在平行四邊形ABCD的邊AD上,EG=ED,延長(zhǎng)CE到點(diǎn)F,使得EF=EC。求證:AF∥BG。2.如圖所示,平行四邊形ABCD內(nèi)有一點(diǎn)E,滿足ED⊥AD于D,∠EBC=∠EDC,∠ECB=45°。請(qǐng)找出與BE相等的一條線段,并給予證明。3.如圖,在△ABC中,AB=BC=12cm,∠A
【摘要】第一篇:幾何證明題 幾何證明題集(七年級(jí)下冊(cè)) 姓名:_________班級(jí):_______ 一、互補(bǔ)”。 E D 二、證明下列各題: 1、如圖,已知∠1=∠2,∠3=∠D,求證:DB/...
2024-10-27 12:50
【摘要】一.計(jì)算題(簡(jiǎn)便計(jì)算)簡(jiǎn)便計(jì)算:
【摘要】中考解答下列各題一、證明題:1、在正方形ABCD中,AC為對(duì)角線,E為AC上一點(diǎn),連接EB、ED并延長(zhǎng)分別交AD、AB于F、G(1)求證:EF=EG;(2)當(dāng)∠BED=120°時(shí),求∠EFD的度數(shù).AFDEBC2、已知:如圖,在正方形ABCD中,點(diǎn)E、F分別在BC和CD上,AE=AF.(
2025-04-02 12:13
【摘要】幾何證明◆典例精析【例題1】(天津)已知Rt△ABC中,∠ACB=90°,AC=6,BC=8.(1)如圖①,若半徑為r1的⊙O1是Rt△ABC的內(nèi)切圓,求r1;(2)如圖②,若半徑為r2的兩個(gè)等圓⊙O1、⊙O2外切,且⊙O1與AC、AB相切,⊙O2與BC、AB相切,求r2;(3)如圖③,當(dāng)n是大于2的正整數(shù)時(shí),若半徑為rn的n個(gè)等
2025-04-02 06:14
【摘要】1、填空完成推理過程:[1]如圖,∵AB∥EF(已知)∴∠A+=1800()∵DE∥BC(已知)∴∠DEF=()∠ADE=(
2025-04-02 01:40