【總結】第四節(jié)洛朗級數(shù)二、洛朗級數(shù)的概念三、函數(shù)的洛朗展開式一、問題的引入五、小結與思考四、典型例題2一、問題的引入問題:.,)(00的冪級數(shù)是否能表示為不解析在如果zzzzf?nnnzzc)(.10??????雙邊冪級數(shù)負冪項部分正冪項
2025-01-19 11:17
【總結】12課程說明及考核辦法?課程說明?面向通信學院的必修課,40學時.?學時所限,基本上按教材內(nèi)容授課.?考核辦法?課程結束后,統(tǒng)一組織考試.?成績?yōu)榘俜种疲瑹o平時成績.3第一章復數(shù)與復變函數(shù)?本章主要內(nèi)容?復數(shù)的概念;?復數(shù)的性質,運算;?復平面
2025-07-25 04:10
【總結】By王建Email:復變函數(shù)的應用背景世界著名數(shù)學家:19世紀最獨特的創(chuàng)造是復變函數(shù)理論。象微積分的直接擴展統(tǒng)治了18世紀那樣,該數(shù)學分支幾乎統(tǒng)治了19世紀。它曾被稱為這個世紀的數(shù)學享受,也曾作為抽象科學中最和諧的理論。人們引入復數(shù)。在實數(shù)范圍內(nèi)無解方程如從解代數(shù)方程
2025-01-19 09:05
【總結】12設D是單連通區(qū)域,P,Q有一階連續(xù)偏導數(shù),則,)1(xQyPD?????內(nèi)處處有在,0)2(???LQdyPdxLD,有內(nèi)任一按段光滑閉曲線沿與路徑無關,,有內(nèi)任意按段光滑曲線對??LQdyPdxLD)3(。內(nèi)是某一函數(shù)的全微分在)(DQdyPdx?43D一、柯西積分定理C
2024-12-08 00:49
【總結】復習與回顧定理二.),(),(),(:),(),()(00000處連續(xù)在和連續(xù)的充要條件是在函數(shù)yxyxvyxuiyxzyxivyxuzf????定理一.),(lim,),(lim)(lim,,),,(),()(0000000
2025-01-19 08:40
【總結】§復變函數(shù)定義(一元或單)復變函數(shù)(簡稱復變函數(shù)):()fDCC??即復變函數(shù),是中某幾何到的一個映射,如:,稱為的定義域,為的值域。fCDCDff()fD()wfz?由于
2025-10-15 16:42
【總結】第一節(jié)復數(shù)及其代數(shù)運算一、復數(shù)的概念二、復數(shù)的代數(shù)運算三、小結與思考2一、復數(shù)的概念1.虛數(shù)單位:.,,稱為虛數(shù)單位引入一個新數(shù)為了解方程的需要i.1:2在實數(shù)集中無解方程實例??x對虛數(shù)單位的規(guī)定:;1)1(2??i.)2(四則運算樣的法則進行可以與實數(shù)在一起按同i3
2025-03-22 06:15
【總結】序言?馬克思曾經(jīng)說過:“一種科學只有在成功地運用數(shù)學時,才算達到了真正完善的地步”。數(shù)學物理方法課程體系數(shù)學物理基礎篇復變函數(shù)篇數(shù)學物理方程篇特殊函數(shù)篇計算機仿真篇《數(shù)學物理方法》課程的主要內(nèi)容?
2024-12-08 05:11
【總結】實數(shù)集的一些性質和特點:(1)實數(shù)可以判定相等或不相等;(2)不相等的實數(shù)可以比較大小;(3)實數(shù)可以用數(shù)軸上的點表示;(4)實數(shù)可以進行四則運算;(5)負實數(shù)不能進行開偶次方根運算;……(1)實數(shù)集原有的有關性質和特點能否推廣到復數(shù)集?(2)從復數(shù)的特點出發(fā),尋找復數(shù)集新的(實數(shù)集
2024-11-17 17:10
【總結】復數(shù)z=a+bi直角坐標系中的點Z(a,b)xyobaZ(a,b)建立了平面直角坐標系來表示復數(shù)的平面x軸實軸y軸虛軸(數(shù))(形)復數(shù)平面(簡稱復平面)一一對應z=a+bi復數(shù)的幾何意義(一)復數(shù)z=a+bi直角坐標系中的點
2025-08-16 01:49
【總結】現(xiàn)在我們就引入這樣一個數(shù)i,把i叫做虛數(shù)單位,并且規(guī)定:(1)i2??1;(2)實數(shù)可以與i進行四則運算,在進行四則運算時,原有的加法與乘法的運算率(包括交換律、結合律和分配律)仍然成立。引入新數(shù),完善數(shù)系②復數(shù)Z=a+bi(a∈R,
2025-10-10 14:48
【總結】復變函數(shù)與積分變換ComplexFunctionsandIntegralTransformation云南師范大學物理與電子信息學院和偉引言在十六世紀中葉,G.Cardano(1501-1576)在研究一元二次方程時引進了復數(shù)。他發(fā)現(xiàn)這個方程沒有根,并
2025-05-11 07:05
【總結】復數(shù)的幾何意義【課標要求】1.理解復平面及相關概念和復數(shù)與復平面內(nèi)的點、向量的對應關系.2.掌握復數(shù)加減法的幾何意義及應用.3.掌握復數(shù)模的概念及幾何意義.【核心掃描】1.復數(shù)的模、復數(shù)的幾何意義.(重點)2.模及復數(shù)幾何意義的應用.(難點)自學導引1.復平面
2024-11-18 08:56
【總結】復變函數(shù)與積分變換ComplexAnalysisandIntegralTransform復變函數(shù)與積分變換?初等函數(shù)復變函數(shù)與積分變換ComplexAnalysisandIntegralTransform復變函數(shù)與積分變換yieyezfxxsincos)(??1212(),()(),
2025-08-20 01:35
【總結】浙江大學復變函數(shù)與積分變換賈厚玉浙江大學第一章復數(shù)與復變函數(shù)第二章解析函數(shù)第三章復變函數(shù)的積分第四章級數(shù)第五章留數(shù)第六章保角映射第七章Laplace變換浙江大學第一章復數(shù)與復變函數(shù)復數(shù)及其代數(shù)運算復數(shù)的表示復數(shù)的乘冪與方根復平面點
2025-07-21 20:43