【總結】不等式與不等式典型例題例320xxm??????有解,則m的取值范圍是:。010axx???????無解,則a的取值范圍是:。例202350xabxab?????????的解集為-1x&
2025-07-23 23:04
【總結】河南省泌陽縣職業(yè)教育中心周祥松指數(shù)不等式的解法是利用指數(shù)函數(shù)的性質化為同解的代數(shù)不等式);()();()(10);()();()(1)()()()()()()()(xgxfaaxgxfaa時,axgxfaaxgxfaa時,axgxfxgxfxgxf
2025-05-09 00:31
2025-08-15 22:11
【總結】不等式復習0ba???b1a1?22baba0ba??????b1a1?a1ba1??ba?22ba?0ba??*范例選粹[例題1]若,則下列不等式中,不能成立的是()A.
2024-11-09 08:12
【總結】第二十二講不等式的應用100件某種商店,為使這批貨物盡快脫手,該商店采取了如下銷售方案,先將價格提高到原來的,再作三次降價處理:第一次降價30%,標出“虧本價”;第二次降價30%,標出“破產價”第三次降價30%,標出“跳樓價”.三次降價處理銷售結果如下表:降價次數(shù)一二三銷售件數(shù)1040一搶而光
2024-11-19 12:04
【總結】不等式的性質(復習課)一、基礎知識1、兩個數(shù)的大小關系a>ba-b>0a<ba-b<0a=ba-b=02、比較兩個數(shù)的大小的方法作差變形判斷符號得出結論3、作
2025-08-05 19:30
【總結】中考復習準備好了嗎?陽泉市義井中學高鐵牛時刻準備著!2020年課程標準及學習目標有的放矢(課標要求)(1)方程與方程組①能夠根據(jù)具體問題中的數(shù)量關系,列出方程,體會方程是刻畫現(xiàn)實世界的一個有效的數(shù)學模型。②經歷用觀察、畫圖或計算器等手段估計方程解的過程。[參A例7]
2024-11-18 21:41
【總結】一、常見不等式1、一元一次不等式的法2、絕對值不等式x<-a或x>a-a<x<a|x|<a(a>0)|x|>a(a>0)ax>b或ax<b3、一元二次不等式的解法ax2+bx+c>0(a>0)或ax2+bx+c<0(a>0)
2024-11-06 13:39
【總結】不等式的定義:一般地,用符號“”、“≥”連接的式子叫做不等式不等式的解集可在數(shù)軸上直觀表示。規(guī)律:大于向箭頭,小于向箭尾,有等號(≤、≥)畫實心點,無等號(<、>=畫空心圈。列不等式注意找到問題中不等關系的詞正數(shù)
2024-11-06 18:14
【總結】中考復習準備好了嗎?陽泉市義井中學高鐵牛時刻準備著!課程標準及學習目標有的放矢(課標要求)(1)方程與方程組①能夠根據(jù)具體問題中的數(shù)量關系,列出方程,體會方程是刻畫現(xiàn)實世界的一個有效的數(shù)學模型。②經歷用觀察、畫圖或計算器等手段估計方程解的過程。[參A例7]③
2024-11-07 02:12
2024-11-07 02:27
【總結】......不等式專題復習類型一:不等關系及解不等式1.若為實數(shù),則下列命題正確的是()A.若,則B.若,則C.若,則D.若,則2
2025-04-16 12:51
【總結】第一篇:不等式證明,均值不等式 1、設a,b?R,求證:ab3(ab)+aba+b23abba2、已知a,b,c是不全相等的正數(shù),求證:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc...
2024-11-03 17:10
【總結】集合和不等式測試卷班級______________姓名____________學號______得分____________一、填空題(本大題共48分,每小題4分)1、設集合A=,集合B=若AB=則AB=2、設全集,集合,,,則等于3、已知則的最小值4、設命題:,命題:對任何R,都有.命題與中
2025-08-17 06:35
【總結】基本不等式及應用一、考綱要求:.2.會用基本不等式解決簡單的最大(小)值問題.3.了解證明不等式的基本方法——綜合法.二、基本不等式基本不等式不等式成立的條件等號成立的條件≤a0,b0a=b三、常用的幾個重要不等式(1)a2+b2≥2ab(a,b∈R)(2)ab≤()2(a,b∈R)(3)≥()2(a,
2025-04-16 22:38