【總結(jié)】機動目錄上頁下頁返回結(jié)束?第十節(jié)歐拉方程歐拉方程)(1)1(11)(xfypyxpyxpyxnnnnnn?????????)(為常數(shù)kp,tex?令常系數(shù)線性微分方程xtln?即第十二章歐拉方程的算子解法:)(1)1(11)(xfypyxpyxpyxnn
2025-08-05 06:25
【總結(jié)】Thursday,May26,20221第二章系統(tǒng)的數(shù)學(xué)模型Thursday,May26,20222本章的主要內(nèi)容控制系統(tǒng)微分方程建立傳遞函數(shù)控制系統(tǒng)的框圖和傳遞函數(shù)控制系統(tǒng)的信號流圖Thursday,May26,20223概述
2025-04-29 00:54
【總結(jié)】1常微分方程OrdinaryDifferentialEquations(5)高階常系數(shù)線性微分方程惺恰突訣粹能片扛瞬雒境畝誹率衙荇栽爸檢磷觖錦梅呆布嵋笑賤縶腹鏈雜查再芪濘兄罰裂篷莨盈逞窘胡恭鈀胗蹲躅擔溽擁絳伊渙蛩鐵麝瑭攥絨匆尾渾呃踺遲窖斗七缽畔諱戌脧挪饑飼硪阿璧趕懂稻夫財奪惟瘧枇仵孛罌體絞滋廩僅2§4.高階線性微分方程(
2024-10-19 18:02
【總結(jié)】引言回顧?靜力學(xué)研究物體在力系作用下的平衡規(guī)律及力系的簡化;?運動學(xué)從幾何觀點研究物體的運動,而不涉及物體所受的力;?動力學(xué)研究物體的機械運動與作用力之間的關(guān)系。動力學(xué)就是從因果關(guān)系上論述物體的機械運動。是理論力學(xué)中最具普遍意義的部分,靜力學(xué)、運動學(xué)則是動力學(xué)的特殊情況。低速、宏觀物體的機械運動的普遍規(guī)律。
2025-06-16 14:51
【總結(jié)】完美WORD格式資料引言近年來,隨著市場經(jīng)濟的不斷發(fā)展、經(jīng)濟的不斷繁榮,經(jīng)濟活動中的實際問題也愈加復(fù)雜,簡單的分析已經(jīng)不足以滿足企業(yè)管理者對經(jīng)濟分析的需求。因此,有必要將高等數(shù)學(xué)應(yīng)用于簡單的數(shù)學(xué)函數(shù)所不能解決的實際經(jīng)濟問題中,對其進行定量分析,這使得高等數(shù)學(xué)在解
2025-06-20 12:25
【總結(jié)】331§9.4二階常系數(shù)線性微分方程二階常系數(shù)線性微分方程的一般形式為)(xfqyypy??????其中qp和是實常數(shù),)(xf是已知函數(shù)。當0)(?xf時,形式為0??????qyypy稱為二階常系數(shù)線性齊次微分方程。例如034??????yy如果
2025-01-20 04:56
【總結(jié)】上頁下頁返回結(jié)束2022/3/131第一節(jié)微分方程的基本概念一、問題的提出二、微分方程的定義三、主要問題—求方程的解四、小結(jié)思考題第五章常微分方程上頁下頁返回結(jié)束2022/3/132例1一曲線通過點(1,2),
2025-02-21 12:49
【總結(jié)】引例:破案問題某公安局于晚上7時30分發(fā)現(xiàn)一具尸體,當天晚上8點20分,法醫(yī)測得尸體溫度為℃,1小時后,尸體被抬走的時候又測得尸體的溫度為℃。假定室溫在幾個小時內(nèi)均為℃,由案情分析得知張某為此案的主要嫌疑犯,但張某矢口否認,并有證人說:“下午張某一直在辦公室,下午5時打了一個電話后才離開辦公室”
2024-10-16 18:30
【總結(jié)】微分方程模型馬忠明動態(tài)模型?描述對象特征隨時間(空間)的演變過程?分析對象特征的變化規(guī)律?預(yù)報對象特征的未來性態(tài)?研究控制對象特征的手段?根據(jù)函數(shù)及其變化率之間的關(guān)系確定函數(shù)微分方程建模?根據(jù)建模目的和問題分析作出簡化假設(shè)?按照內(nèi)在規(guī)律或用類比
2025-01-17 14:49
【總結(jié)】110-3可降階的高階微分方程2復(fù)習(xí)1.可分離變量方程分離變量法步驟:;-隱式通解.d()dyyxx??形如的微分方程.解法:,xyu?作變量代換,yxu?即dd.yuuxxx??則3.一階線性非齊次微分方程(1)一般式(2)通解公式
2025-05-12 17:48
【總結(jié)】第二章控制系統(tǒng)的數(shù)學(xué)模型?掌握不同物理系統(tǒng)微分方程的建立?掌握拉氏變換及其性質(zhì)?熟悉基本環(huán)節(jié)的傳遞函數(shù)?能用拉氏變換、框圖化簡及梅森增益公示求系統(tǒng)的傳遞函數(shù)教學(xué)目的?建立系統(tǒng)的微分方程?拉氏變換的應(yīng)用及框圖化簡學(xué)習(xí)重點和難點本次課程作業(yè)2-172-13(c)把求傳遞函數(shù)改為求微分方程
2025-05-12 11:22
【總結(jié)】YANGZHOUUNIVERSITY二階微分方程的機動目錄上頁下頁返回結(jié)束習(xí)題課(二)二、微分方程的應(yīng)用解法及應(yīng)用一、兩類二階微分方程的解法第十二章YANGZHOUUNIVERSITY一、兩類二階微分方程的解法1.可降階微分方程的解法—
2024-10-17 20:12
【總結(jié)】第八講線性微分方程(2)高等教育電子音像出版社寧波大學(xué)陶祥興等編本節(jié)內(nèi)容提要一、準備工作.二、指數(shù)矩陣的定義和性質(zhì).三、基解矩陣的計算公式.四、拉氏變換及應(yīng)用.一、準備工作.(1)xAx??A在前面一講中,除了基解矩陣,我們已經(jīng)得到了線性微分
2024-12-08 05:36
【總結(jié)】一、問題的提出二、微分方程的定義三、主要問題—求方程的解四、小結(jié)思考題第一節(jié)微分方程的基本概念例1一曲線通過點(1,2),且在該曲線上任一點),(yxM處的切線斜率為x2,求這曲線的方程.解),(xyy?設(shè)所求曲線為d2dyxx?2dyxx??積分,得2,
2025-08-21 12:40
【總結(jié)】拉普拉斯變換在微分方程中的應(yīng)用王彥朋(寶雞文理學(xué)院數(shù)學(xué)系,陜西寶雞721013)摘要:利用了拉普拉斯變換及其它的性質(zhì),討論了它在線性時不變系統(tǒng)的時域響應(yīng)和電路分析中的應(yīng)用.關(guān)鍵詞:拉普拉斯變換;微分方程;電路分析隨著計算機的飛速發(fā)展,,,數(shù)字電路、,拉普拉斯變換是分析這類系統(tǒng)極為有效的方法,從而給學(xué)習(xí)使用者在應(yīng)用上帶來很大的方便.1拉普
2025-06-25 02:24