【總結(jié)】一個小球自由下落,它在下落3秒時的速度是多少??一個小球自由下落,求它從3s到(3+Δt)s這段時間內(nèi)的平均速度。變題:解:⑴先求從3s到(3+Δt)s這段時間內(nèi)的位移的增量Δs;記自由落體運動的方程為s=s(t)=·t2則s(3+Δt)=(3+Δt)2
2024-11-03 20:19
【總結(jié)】.............123一、復(fù)習(xí)目標了解導(dǎo)數(shù)概念的某些實際背景(瞬時速度,加速度,光滑曲線切線的斜率等),掌握函數(shù)在一點處的導(dǎo)數(shù)的定義和導(dǎo)數(shù)的幾何意義,理解導(dǎo)數(shù)的概念,熟記常見函數(shù)的導(dǎo)數(shù)公式c,xm(m為有理數(shù)),sinx,cosx,ex
2024-11-03 20:18
【總結(jié)】教學(xué)目標?:掌握用導(dǎo)數(shù)的符號判別函數(shù)增減性的方法,提高對導(dǎo)數(shù)與微分的學(xué)習(xí)意義的認識.?:訓(xùn)練解題方法,培養(yǎng)解題能力。?:能用普遍聯(lián)系的觀點看待事物,抓住引起事物變化的主要因素。?:數(shù)學(xué)方法的廣泛應(yīng)用之美,數(shù)學(xué)內(nèi)容的統(tǒng)一性。重點:利用導(dǎo)數(shù)的符號確定函數(shù)的單調(diào)區(qū)間。難點:利用導(dǎo)數(shù)的符號確定函數(shù)的單調(diào)區(qū)間.單調(diào)性的概念
2024-11-06 23:03
【總結(jié)】()基本初等函數(shù)的導(dǎo)數(shù)公式及導(dǎo)數(shù)的運算法則我們今后可以直接使用的基本初等函數(shù)的導(dǎo)數(shù)公式11.(),'()0;2.(),'();3.()sin,'()cos;4.()cos,'()sin;5.(),'()l
2024-11-18 12:13
【總結(jié)】3.2導(dǎo)數(shù)的運算第一課時常見函數(shù)的導(dǎo)數(shù)學(xué)習(xí)目標1.能根據(jù)定義求函數(shù)y=kx+b,y=c,y=x,y=x2,y=1x的導(dǎo)數(shù).2.掌握常見的基本初等函數(shù)的導(dǎo)數(shù)公式,并能求簡單函數(shù)的導(dǎo)數(shù).課堂互動講練知能優(yōu)化訓(xùn)練3.課前自主學(xué)案課前自主學(xué)案
【總結(jié)】第一節(jié)導(dǎo)數(shù)的概念一、問題的提出二、導(dǎo)數(shù)的定義三、由定義求導(dǎo)數(shù)四、導(dǎo)數(shù)的幾何意義五、可導(dǎo)與連續(xù)的關(guān)系一、問題的提出1、瞬時速度問題設(shè)運動物體的運動方程為s=s(t),則在t與t0之間平均速度Δt)s(tΔt)s(tΔtΔsv00????00)(
2025-01-12 10:10
【總結(jié)】§2-3一、隱函數(shù)的導(dǎo)數(shù)二、對數(shù)求導(dǎo)法四、高階導(dǎo)數(shù)三、由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)1、函數(shù)和、差、積、商的求導(dǎo)法則:).0)(()()()()()(])()([)3();()()()(])()([)2();()(])()([)1(2??????????????????xv
2025-07-25 05:40
【總結(jié)】導(dǎo)數(shù)的乘法法則導(dǎo)數(shù)公示表(三角函數(shù)的自變量為弧度)函數(shù)導(dǎo)函數(shù)函數(shù)導(dǎo)函數(shù)cy?0'?yxyalog?xay??xy?axyln1'?1'????xyaayxln'?xysin?xy2cos1'?xysin'??xycos'
2025-08-05 05:35
【總結(jié)】復(fù)合函數(shù)的導(dǎo)數(shù)一、復(fù)習(xí)與引入:1.函數(shù)的導(dǎo)數(shù)的定義與幾何意義...y=(3x-2)2的導(dǎo)數(shù),那么我們可以把平方式展開,利用導(dǎo)數(shù)的四則運算法則求導(dǎo).然后能否用其它的辦法求導(dǎo)呢?又如我們知道函數(shù)y=1/x2的導(dǎo)數(shù)是=-2/x3,那么函數(shù)y=1/(3x-2)2的導(dǎo)數(shù)又是什么呢?為了解決上面
2024-11-06 19:05
【總結(jié)】第二章導(dǎo)數(shù)與微分什么是導(dǎo)數(shù)、微分?如何計算導(dǎo)數(shù)、微分?第二章導(dǎo)數(shù)與微分第一節(jié)導(dǎo)數(shù)的概念主要內(nèi)容:導(dǎo)數(shù)的定義導(dǎo)數(shù)的幾何意義可導(dǎo)性與連續(xù)性的關(guān)系問題的提出0tt?,0時刻的瞬時速度求tt如圖,,0tt的
2025-07-24 04:51
【總結(jié)】《導(dǎo)數(shù)運算法則》教學(xué)目標?熟練運用導(dǎo)數(shù)的四則運算法則,并能靈活運用?教學(xué)重點:熟練運用導(dǎo)數(shù)的四則運算法則?教學(xué)難點:商的導(dǎo)數(shù)的運用我們今后可以直接使用的基本初等函數(shù)的導(dǎo)數(shù)公式11.(),'()0;2.(),'();3.()sin,'()
2024-11-18 12:15
【總結(jié)】第二章有限差分法及熱傳導(dǎo)的數(shù)值計算本章要點:1.著重掌握導(dǎo)熱問題數(shù)值解法的基本思想2.掌握節(jié)點離散方程的建立及求解本章難點:離散方程的建立(有限差分方程)本章主要內(nèi)容:第一節(jié)導(dǎo)熱問題數(shù)值求解的基本思想
2025-07-25 16:01
【總結(jié)】Chapter2(2)偏導(dǎo)數(shù)與高階偏導(dǎo)數(shù)返回一.偏導(dǎo)數(shù)二.高階偏導(dǎo)數(shù)三.偏導(dǎo)數(shù)在經(jīng)濟分析中的應(yīng)用偏導(dǎo)數(shù)與高階偏導(dǎo)數(shù)目的要求:一.理解多元函數(shù)的偏導(dǎo)數(shù)的概念二.熟練掌握求一階和二階偏導(dǎo)數(shù)的方法重點:一.一階、二階偏導(dǎo)數(shù)計算三.熟練掌握偏導(dǎo)數(shù)
2025-01-14 07:37
【總結(jié)】高等數(shù)學(xué)第二章導(dǎo)數(shù)與微分第二章第二章導(dǎo)數(shù)與微分導(dǎo)數(shù)與微分第二節(jié)第二節(jié)求導(dǎo)數(shù)的一般方法求導(dǎo)數(shù)的一般方法主要內(nèi)容?一、基本初等函數(shù)的導(dǎo)數(shù)?二、函數(shù)四則運算求導(dǎo)法則?三、復(fù)合函數(shù)求導(dǎo)法則?四、隱函數(shù)求導(dǎo)法則高等數(shù)學(xué)一、常數(shù)和基本初等函數(shù)的導(dǎo)數(shù)????????????????)(csc
2025-04-29 13:01
【總結(jié)】§7.函數(shù)變化率在經(jīng)濟中的應(yīng)用1.幾個經(jīng)濟學(xué)中常用的經(jīng)濟函數(shù)函數(shù)的導(dǎo)數(shù),又稱為函數(shù)的變化率,在經(jīng)濟上有很多的應(yīng)用。(1)成本函數(shù)(2)需求函數(shù)(3)收益函數(shù)(4)利潤函數(shù)2.經(jīng)濟學(xué)中的邊際函數(shù)在經(jīng)濟管理上,往往需要判斷在現(xiàn)有的生產(chǎn)情況下,再增加生產(chǎn)量在經(jīng)濟上是否有利。經(jīng)濟管理人員
2025-04-29 00:34