freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

初中幾何輔助線大全[潛心整理]doc(編輯修改稿)

2024-08-13 18:01 本頁面
 

【文章內(nèi)容簡(jiǎn)介】 =4DG因?yàn)镕C=CE-EF=所以EF:FC==1:7練習(xí):1. 如圖5,BD=DC,AE:ED=1:5,求AF:FB。2. 如圖6,AD:DB=1:3,AE:EC=3:1,求BF:FC。 答案:1:10; 2. 9:1 初中幾何輔助線一 初中幾何常見輔助線口訣人說幾何很困難,難點(diǎn)就在輔助線。輔助線,如何添?把握定理和概念。還要刻苦加鉆研,找出規(guī)律憑經(jīng)驗(yàn)。三角形圖中有角平分線,可向兩邊作垂線。也可將圖對(duì)折看,對(duì)稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。線段和差及倍半,延長(zhǎng)縮短可試驗(yàn)。線段和差不等式,移到同一三角去。三角形中兩中點(diǎn),連接則成中位線。三角形中有中線,延長(zhǎng)中線等中線。四邊形平行四邊形出現(xiàn),對(duì)稱中心等分點(diǎn)。梯形問題巧轉(zhuǎn)換,變?yōu)椤骱汀?。平移腰,移?duì)角,兩腰延長(zhǎng)作出高。如果出現(xiàn)腰中點(diǎn),細(xì)心連上中位線。上述方法不奏效,過腰中點(diǎn)全等造。證相似,比線段,添線平行成習(xí)慣。等積式子比例換,尋找線段很關(guān)鍵。直接證明有困難,等量代換少麻煩。斜邊上面作高線,比例中項(xiàng)一大片。圓形半徑與弦長(zhǎng)計(jì)算,弦心距來中間站。圓上若有一切線,切點(diǎn)圓心半徑連。切線長(zhǎng)度的計(jì)算,勾股定理最方便。要想證明是切線,半徑垂線仔細(xì)辨。是直徑,成半圓,想成直角徑連弦?;∮兄悬c(diǎn)圓心連,垂徑定理要記全。圓周角邊兩條弦,直徑和弦端點(diǎn)連。弦切角邊切線弦,同弧對(duì)角等找完。要想作個(gè)外接圓,各邊作出中垂線。還要作個(gè)內(nèi)接圓,內(nèi)角平分線夢(mèng)圓如果遇到相交圓,不要忘作公共弦。內(nèi)外相切的兩圓,經(jīng)過切點(diǎn)公切線。若是添上連心線,切點(diǎn)肯定在上面。要作等角添個(gè)圓,證明題目少困難。注意點(diǎn)輔助線,是虛線,畫圖注意勿改變。假如圖形較分散,對(duì)稱旋轉(zhuǎn)去實(shí)驗(yàn)?;咀鲌D很關(guān)鍵,平時(shí)掌握要熟練。解題還要多心眼,經(jīng)??偨Y(jié)方法顯。切勿盲目亂添線,方法靈活應(yīng)多變。分析綜合方法選,困難再多也會(huì)減。虛心勤學(xué)加苦練,成績(jī)上升成直線。二 由角平分線想到的輔助線 口訣:圖中有角平分線,可向兩邊作垂線。也可將圖對(duì)折看,對(duì)稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。角平分線具有兩條性質(zhì):a、對(duì)稱性;b、角平分線上的點(diǎn)到角兩邊的距離相等。對(duì)于有角平分線的輔助線的作法,一般有兩種。①?gòu)慕瞧椒志€上一點(diǎn)向兩邊作垂線;②利用角平分線,構(gòu)造對(duì)稱圖形(如作法是在一側(cè)的長(zhǎng)邊上截取短邊)。通常情況下,出現(xiàn)了直角或是垂直等條件時(shí),一般考慮作垂線;其它情況下考慮構(gòu)造對(duì)稱圖形。至于選取哪種方法,要結(jié)合題目圖形和已知條件。與角有關(guān)的輔助線(一)、截取構(gòu)全等幾何的證明在于猜想與嘗試,但這種嘗試與猜想是在一定的規(guī)律基本之上的,希望同學(xué)們能掌握相關(guān)的幾何規(guī)律,在解決幾何問題中大膽地去猜想,按一定的規(guī)律去嘗試。下面就幾何中常見的定理所涉及到的輔助線作以介紹。如圖11,∠AOC=∠BOC,如取OE=OF,并連接DE、DF,則有△OED≌△OFD,從而為我們證明線段、角相等創(chuàng)造了條件。例1. 如圖12,AB//CD,BE平分∠BCD,CE平分∠BCD,點(diǎn)E在AD上,求證:BC=AB+CD。分析:此題中就涉及到角平分線,可以利用角平分線來構(gòu)造全等三角形,即利用解平分線來構(gòu)造軸對(duì)稱圖形,同時(shí)此題也是證明線段的和差倍分問題,在證明線段的和差倍分問題中常用到的方法是延長(zhǎng)法或截取法來證明,延長(zhǎng)短的線段或在長(zhǎng)的線段長(zhǎng)截取一部分使之等于短的線段。但無論延長(zhǎng)還是截取都要證明線段的相等,延長(zhǎng)要證明延長(zhǎng)后的線段與某條線段相等,截取要證明截取后剩下的線段與某條線段相等,進(jìn)而達(dá)到所證明的目的。簡(jiǎn)證:在此題中可在長(zhǎng)線段BC上截取BF=AB,再證明CF=CD,從而達(dá)到證明的目的。這里面用到了角平分線來構(gòu)造全等三角形。另外一個(gè)全等自已證明。此題的證明也可以延長(zhǎng)BE與CD的延長(zhǎng)線交于一點(diǎn)來證明。自已試一試。例2. 已知:如圖13,AB=2AC,∠BAD=∠CAD,DA=DB,求證DC⊥AC分析:此題還是利用角平分線來構(gòu)造全等三角形。構(gòu)造的方法還是截取線段相等。其它問題自已證明。例3. 已知:如圖14,在△ABC中,∠C=2∠B,AD平分∠BAC,求證:ABAC=CD分析:此題的條件中還有角的平分線,在證明中還要用到構(gòu)造全等三角形,此題還是證明線段的和差倍分問題。用到的是截取法來證明的,在長(zhǎng)的線段上截取短的線段,來證明。試試看可否把短的延長(zhǎng)來證明呢?練習(xí)1. 已知在△ABC中,AD平分∠BAC,∠B=2∠C,求證:AB+BD=AC2. 已知:在△ABC中,∠CAB=2∠B,AE平分∠CAB交BC于E,AB=2AC,求證:AE=2CE3. 已知:在△ABC中,ABAC,AD為∠BAC的平分線,M為AD上任一點(diǎn)。求證:BMCMABAC4. 已知:D是△ABC的∠BAC的外角的平分線AD上的任一點(diǎn),連接DB、DC。求證:BD+CDAB+AC。(二)、角分線上點(diǎn)向角兩邊作垂線構(gòu)全等過角平分線上一點(diǎn)向角兩邊作垂線,利用角平分線上的點(diǎn)到兩邊距離相等的性質(zhì)來證明問題。例1. 如圖21,已知ABAD, ∠BAC=∠FAC,CD=BC。求證:∠ADC+∠B=180分析:可由C向∠BAD的兩邊作垂線。近而證∠ADC與∠B之和為平角。例2. 如圖22,在△ABC中,∠A=90,AB=AC,∠ABD=∠CBD。求證:BC=AB+AD分析:過D作DE⊥BC于E,則AD=DE=CE,則構(gòu)造出全等三角形,從而得證。此題是證明線段的和差倍分問題,從中利用了相當(dāng)于截取的方法。例3. 已知如圖23,△ABC的角平分線BM、CN相交于點(diǎn)P。求證:∠BAC的平分線也經(jīng)過點(diǎn)P。分析:連接AP,證AP平分∠BAC即可,也就是證P到AB、AC的距離相等。練習(xí):1.如圖24∠AOP=∠BOP=15,PC//OA,PD⊥OA, 如果PC=4,則PD=( ) A 4 B 3 C 2 D 12.已知在△ABC中,∠C=90,AD平分∠CAB,CD=,DB=。3.已知:如圖25, ∠BAC=∠CAD,ABAD,CE⊥AB,AE=(AB+AD).求證:∠D+∠B=180:如圖26,在正方形ABCD中,E為CD 的中點(diǎn),F(xiàn)為BC 上的點(diǎn),∠FAE=∠DAE。求證:AF=AD+CF。5. 已知:如圖27,在Rt△ABC中,∠ACB=90,CD⊥AB,垂足為D,AE平分∠CAB交CD于F,過F作FH//AB交BC于H。求證CF=BH。(三):作角平分線的垂線構(gòu)造等腰三角形從角的一邊上的一點(diǎn)作角平分線的垂線,使之與角的兩邊相交,則截得一個(gè)等腰三角形,垂足為底邊上的中點(diǎn),該角平分線又成為底邊上的中線和高,以利用中位線的性質(zhì)與等腰三角形的三線合一的性質(zhì)。(如果題目中有垂直于角平分線的線段,則延長(zhǎng)該線段與角的另一邊相交)。例1. 已知:如圖31,∠BAD=∠DAC,ABAC,CD⊥AD于D,H是BC中點(diǎn)。求證:DH=(ABAC)分析:延長(zhǎng)CD交AB于點(diǎn)E,則可得全等三角形。問題可證。例2. 已知:如圖32,AB=AC,∠BAC=90,AD為∠ABC的平分線,CE⊥:BD=2CE。分析:給出了角平分線給出了邊上的一點(diǎn)作角平分線的垂線,可延長(zhǎng)此垂線與另外一邊相交,近而構(gòu)造出等腰三角形。例3.已知:如圖33在△ABC中,AD、AE分別∠BAC的內(nèi)、外角平分線,過頂點(diǎn)B作BFAD,交AD的延長(zhǎng)線于F,連結(jié)FC并延長(zhǎng)交AE于M。求證:AM=ME。分析:由AD、AE是∠BAC內(nèi)外角平分線,可得EA⊥AF,從而有BF//AE,所以想到利用比例線段證相等。例4. 已知:如圖34,在△ABC中,AD平分∠BAC,AD=AB,CM⊥AD交AD延長(zhǎng)線于M。求證:AM=(AB+AC)分析:題設(shè)中給出了角平分線AD,自然想到以AD為軸作對(duì)稱變換,作△ABD關(guān)于AD的對(duì)稱△AED,然后只需證DM=EC,另外由求證的結(jié)果AM=(AB+AC),即2AM=AB+AC,也可嘗試作△ACM關(guān)于CM的對(duì)稱△FCM,然后只需證DF=CF即可。練習(xí):1. 已知:在△ABC中,AB=5,AC=3,D是BC中點(diǎn),AE是∠BAC的平分線,且CE⊥AE于E,連接DE,求DE。2. 已知BE、BF分別是△ABC的∠ABC的內(nèi)角與外角的平分線,AF⊥BF于F,AE⊥BE于E,連接EF分別交AB、AC于M、N,求證MN=BC(四)、以角分線上一點(diǎn)做角的另一邊的平行線有角平分線時(shí),常過角平分線上的一點(diǎn)作角的一邊的平行線,從而構(gòu)造等腰三角形?;蛲ㄟ^一邊上的點(diǎn)作角平分線的平行線與另外一邊的反向延長(zhǎng)線相交,從而也構(gòu)造等腰三角形。如圖41和圖42所示。12ACDB例4 如圖,ABAC, ∠1=∠2,求證:AB-ACBD-CD。例5 如圖,BCBA,BD平分∠ABC,且AD=CD,求證:∠A+∠C=180。BDCAABECD例6 如圖,AB∥CD,AE、DE分別平分∠BAD各∠ADE,求證:AD=AB+CD。練習(xí):1. 已知,如圖,∠C=2∠A,AC=2BC。求證:△ABC是直角三角形。CAB2.已知:如圖,AB=2AC,∠1=∠2,DA=DB,求證:DC⊥ACABDC12 3.已知CE、AD是△ABC的角平分線,∠B=60176。,求證:AC=AE+CDAEBDC4.已知:如圖在△ABC中,∠A=90176。,AB=AC,BD是∠ABC的平分線,求證:BC=AB+ADABCD三 由線段和差想到的輔助線口訣:線段和差及倍半,延長(zhǎng)縮短可試驗(yàn)。線段和差不等式,移到同一三角去。遇到求證一條線段等于另兩條線段之和時(shí),一般方法是截長(zhǎng)補(bǔ)短法:截長(zhǎng):在長(zhǎng)線段中截取一段等于另兩條中的一條,然后證明剩下部分等于另一條;補(bǔ)短:將一條短線段延長(zhǎng),延長(zhǎng)部分等于另一條短線段,然后證明新線段等于長(zhǎng)線段。對(duì)于證明有關(guān)線段和差的不等式,通常會(huì)聯(lián)系到三角形中兩線段之和大于第三邊、之差小于第三邊,故可想辦法放在一個(gè)三角形中證明。一、 在利用三角形三邊關(guān)系證明線段不等關(guān)系時(shí),如直接證不出來,可連接兩點(diǎn)或廷長(zhǎng)某邊構(gòu)成三角形,使結(jié)論中出現(xiàn)的線段在一個(gè)或幾個(gè)三角形中,再運(yùn)用三角形三邊的不等關(guān)系證明,如:例 已知如圖11:D、E為△ABC內(nèi)兩點(diǎn),求證:AB+ACBD+DE+CE.證明:(法一)將DE兩邊延長(zhǎng)分別交AB、AC于M、N,在△AMN中,AM+ANMD+DE+NE。(1)在△BDM中,MB+MDBD;(2)在△CEN中,CN+NECE;(3)由(1)+(2)+(3)得:AM+AN+MB+MD+CN+NEMD+DE+NE+BD+CE∴AB+ACBD+DE+EC(法二:圖12)延長(zhǎng)BD交AC于F,廷長(zhǎng)CE交BF于G,在△ABF和△GFC和△GDE中有:AB+AFBD+DG+GF(三角形兩邊之和大于第三邊)…(1)GF+FCGE+CE(同上)(2)DG+GEDE(同上)(3)由(1)+(2)+(3)得:AB+AF+GF+FC+DG+GEBD+DG+GF+GE+CE+DE∴AB+ACBD+DE+EC。二、 在利用三角形的外角大于任何和它不相鄰的內(nèi)角時(shí)如直接證不出來時(shí),可連接兩點(diǎn)或延長(zhǎng)某邊,構(gòu)造三角形,使求證的大角在某個(gè)三角形的外角的位置上,小角處于這個(gè)三角形的內(nèi)角位置上,再利用外角定理:例如:如圖21:已知D為△ABC內(nèi)的任一點(diǎn),求證:∠BDC∠BAC。分析:因?yàn)椤螧DC與∠BAC不在同個(gè)三角形中,沒有直接的聯(lián)系,可適當(dāng)添加輔助線構(gòu)造新的三角形,使∠BDC處于在外角的位置,∠BAC處于在內(nèi)角的位置;證法一:延長(zhǎng)BD交AC于點(diǎn)E,這時(shí)∠BDC是△EDC的外角,∴∠BDC∠DEC,同理∠DEC∠BAC,∴∠BDC∠BAC證法二:連接AD,并廷長(zhǎng)交BC于F,這時(shí)∠BDF是△ABD的外角,∴∠BDF∠BAD,同理,∠CDF∠CAD,∴∠BDF+∠CDF∠BAD+∠CAD,即:∠BDC∠BAC。注意:利用三角形外角定理證明不等關(guān)系時(shí),通常將大角放在某三角形的外角位置上,小角放在這個(gè)三角形的內(nèi)角位置上,再利用不等式性質(zhì)證明。三、 有角平分線時(shí),通常在角的兩邊截取相等的線段,構(gòu)造全等三角形,如:例如:如圖31:已知AD為△ABC的中線,且∠1=∠2,∠3=∠4,求證:BE+CFEF。分析:要證BE+CFEF,可利用三角形三邊關(guān)系定理證明,須把BE,CF,EF移到同一個(gè)三角形中,而由已知∠1=∠2,∠3=∠4,可在角的兩邊截取相等的線段,利用三角形全等對(duì)應(yīng)邊相等,把EN,F(xiàn)N,EF移到同個(gè)三角形中。證明:在DN上截取DN=DB,連接NE,NF,則DN=DC,在△DBE和△NDE中:DN=DB(輔助線作法)∠1=∠2(已知)ED=ED(公共邊)∴△DBE≌△NDE(SAS)∴BE=NE(全等三角形對(duì)應(yīng)邊相等)同理可得:CF=NF在△EFN中EN+FNEF(三角形兩邊之和大于第三邊)∴BE+CFEF。注意:當(dāng)證題有角平分線時(shí),??煽紤]在角的兩邊截取相等的線段,構(gòu)造全等三角形,然后用全等三角形的對(duì)應(yīng)性質(zhì)得到相等元素。四、 截長(zhǎng)補(bǔ)短法作輔助線。例如:已知如圖61:在△ABC中,ABAC,∠1=∠2,P為AD上任一點(diǎn)求證:
點(diǎn)擊復(fù)制文檔內(nèi)容
公司管理相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1