【總結(jié)】2020年12月16日星期三a(k0)ka(k0)k空間向量的數(shù)乘K=0?0abab+OABCOBOAABCAOAOC????空間向量的加減空間向量的加法、減法與數(shù)乘運(yùn)算bkakbak+??)(數(shù)乘分配律數(shù)乘
2024-11-09 01:05
【總結(jié)】復(fù)習(xí)1、平面向量基本定理的內(nèi)容是什么?2、什么是平面向量的基底?平面向量的基本定理:向量的基底:不共線的平面向量e1,e2叫做這一平面內(nèi)所有向量的一組基底.如果e1,e2是同一平面內(nèi)的兩個(gè)不共線的向量,那么對(duì)于這一平面內(nèi)的任一向量a,有且只有一對(duì)實(shí)數(shù)λ1,
2024-11-10 01:04
【總結(jié)】1、平面向量的坐標(biāo)表示與平面向量分解定理的關(guān)系。2、平面向量的坐標(biāo)是如何定義的?3、平面向量的運(yùn)算有何特點(diǎn)?類似地,由平面向量的分解定理,對(duì)于平面上的任意向量,均可以分解為不共線的兩個(gè)向量和使得a→11λa→22λa→=a
2024-11-12 19:04
【總結(jié)】坐標(biāo)表示1.空間向量的基本定理:2.平面向量的坐標(biāo)表示及運(yùn)算律:(,,)pxiyjijxy??(1)若分別是軸上同方向的兩個(gè)單位向量(,)pxy則的坐標(biāo)為1212(,),(,)aaabbb??(2)若11221122(,)
2024-11-18 11:25
【總結(jié)】海鹽高級(jí)中學(xué)高新軍復(fù)習(xí)引入:?若e1、e2是同一平面內(nèi)的兩個(gè)不共線向量,則對(duì)于這一平面內(nèi)的任意向量a,有且只有一對(duì)實(shí)數(shù)λ1,λ2,使a=λ1e1+λ2e2.?設(shè)i、j是與x軸、y軸同向的兩個(gè)單位向量,若a=xi+yj,則a=(x,y).我們需要研究的問題是:⑴向量的和、差、數(shù)乘、模的運(yùn)算
2024-08-14 06:24
【總結(jié)】空間向量及其運(yùn)算共線向量定理共面向量定理0//aabbabb???對(duì)空間任意兩個(gè)向量、(),的充要條件是存在實(shí)數(shù),使=.,,,abpabxypxayb如果兩個(gè)向量不共線,則向量與向量共面的充要
2024-08-01 08:50
【總結(jié)】......向量的坐標(biāo)表示及其運(yùn)算【知識(shí)概要】1.向量及其表示1)向量:我們把既有大小又有方向的量叫向量(向量可以用一個(gè)小寫英文字母上面加箭頭來表示,如讀作向量,向量也可以用兩個(gè)大寫字母上面加箭
2025-06-30 20:33
【總結(jié)】第二節(jié)平面向量的基本定理及坐標(biāo)表示基礎(chǔ)梳理(1)平面向量基本定理定理:如果e1,e2是同一平面內(nèi)的兩個(gè)的向量,那么對(duì)于這一平面內(nèi)的任意向量a,一對(duì)實(shí)數(shù)λ1,λ2,使a=.其中
2024-11-12 16:44
【總結(jié)】OxyijaA(x,y)a兩者相同3.兩個(gè)向量相等的充要條件,利用坐標(biāo)如何表示?坐標(biāo)(x,y)一一對(duì)應(yīng)向量a1.以原點(diǎn)O為起點(diǎn)作OA=a,點(diǎn)A的位置由誰確定?2.點(diǎn)A的坐標(biāo)與向量a的坐標(biāo)有什么關(guān)系?由a唯一確定a=bx1=x2且y1=y2
2024-08-14 06:17
【總結(jié)】本章優(yōu)化總結(jié)專題探究精講本章優(yōu)化總結(jié)知識(shí)體系網(wǎng)絡(luò)章末綜合檢測(cè)知識(shí)體系網(wǎng)絡(luò)專題探究精講空間向量與空間位置關(guān)系用向量方法證明平行與垂直問題的一般步驟是:(1)建立立體圖形與空間向量的關(guān)系,利用空間向量表示問題中所涉及到的點(diǎn)、線、面,把立體幾何問題轉(zhuǎn)化為空間向量問題.
2024-11-12 19:03
【總結(jié)】§3.空間向量運(yùn)算的坐標(biāo)表示知識(shí)點(diǎn)一空間向量的坐標(biāo)運(yùn)算設(shè)a=(1,5,-1),b=(-2,3,5).(1)若(ka+b)∥(a-3b),求k;(2)若(ka+b)⊥(a-3b),求k.解(1)ka+b=(k-2,5k+3,-k+5)
2024-11-20 03:14
2024-11-11 21:09
【總結(jié)】1空間向量運(yùn)算的坐標(biāo)表示北師大版高中數(shù)學(xué)選修2-1第二章《空間向量與立體幾何》法門高中姚連省制作2一、向量的直角坐標(biāo)運(yùn)算則設(shè)),,(),,,(321321bbbbaaaa??;??ab;??ab;??a;??ab//;.??ab;??ab112233(,,)???a
2024-11-17 15:04
【總結(jié)】2020屆高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件26《平面向量的坐標(biāo)表示與運(yùn)算》?要點(diǎn)·疑點(diǎn)·考點(diǎn)?課前熱身?能力·思維·方法?延伸·拓展?誤解分析平面向量的坐標(biāo)表示要點(diǎn)·疑點(diǎn)·考點(diǎn)
2024-11-10 00:27
【總結(jié)】,p,xypxayb.abab如果兩個(gè)向量不共線,則向量與向量共面的充要條件是存在實(shí)數(shù)對(duì),,使=+共線向量定理:復(fù)習(xí):共面向量定理:0//a.abbabb???對(duì)空間任意兩個(gè)向量、(),的充要條件是
2025-06-12 19:02