【總結(jié)】為您服務(wù)教育網(wǎng)·易做易錯(cuò)題選不等式部分一、選擇題:1.(如中)設(shè)若0f(b)f(c),則下列結(jié)論中正確的是A(a-1)(c-1)0Bac1Cac=1Dac1錯(cuò)解原因是沒(méi)有數(shù)形結(jié)合意識(shí),正解是作出函數(shù)的圖象,由圖可得出選D.2.(如中)設(shè)成立的充分
2025-01-14 11:11
【總結(jié)】含參數(shù)的一元二次不等式的解法解含參數(shù)的一元二次不等式,通常情況下,均需分類(lèi)討論,那么如何討論呢?對(duì)含參一元二次不等式常用的分類(lèi)方法有三種:一、按項(xiàng)的系數(shù)的符號(hào)分類(lèi),即;例1解不等式:分析:本題二次項(xiàng)系數(shù)含有參數(shù),,故只需對(duì)二次項(xiàng)系數(shù)進(jìn)行分類(lèi)討論。解:∵解得方程兩根∴當(dāng)時(shí),解集為當(dāng)時(shí),不等式為,解集為當(dāng)時(shí),解集為例2
2025-04-04 05:10
【總結(jié)】解不等式高考要求不等式要求層次重難點(diǎn)一元二次不等式C解一元二次不等式例題精講板塊一:解一元二次不等式(一)知識(shí)內(nèi)容1.含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)為的整式不等式,叫做一元二次不等式.一元二次不等式的解集,一元二次方程的根及二次函數(shù)圖象之間的關(guān)系如下表(以為例):判別式
2025-07-24 02:03
【總結(jié)】不等式的基本性質(zhì)判斷下列說(shuō)法是否正確:a=b,b=c,則a=ca=b,a+1=b+1a=b,則3a=3b做一做等式性質(zhì)1,2,32、如圖,則a和b間的大小關(guān)系如何?不等式的兩邊都加上(或減去)同一個(gè)數(shù),所得到的不等式仍成立。1、若ab、bc,則a和c有怎么的大小關(guān)系?合作學(xué)習(xí)
2024-12-01 00:43
【總結(jié)】3.基本不等式的證明1.(a-b)2≥0?a2+b2≥2ab,那么(a)2+(b)2≥2ab,即a+b2≥ab,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立.+b2叫做a、b的算術(shù)平均數(shù).3.ab叫做a、b的幾何平均數(shù).4.基本不等式a+b2≥ab,說(shuō)明兩個(gè)正數(shù)的幾何平均數(shù)不大于它們的
2024-12-05 10:13
【總結(jié)】不等式解法舉例(1)含絕對(duì)值的一元一次、一元二次不等式(組)的解法基本絕對(duì)值不等式的解集?不等式︱x︱0)的解集是{x︱-aa(a0)的解集是{x︱xa或x-a}.?嘗試:(1)︱x︱1065
2024-11-17 05:49
【總結(jié)】第二節(jié)不等式的基本性質(zhì)一、學(xué)前練習(xí)1.-7≤-5,3+4>1+45+3≠12-5,x≥8a+2>a+1,x+3<6(1)上述式子有哪些表示數(shù)量關(guān)系的符號(hào)?這些符號(hào)表示什么關(guān)系?
2025-07-23 23:05
【總結(jié)】第一篇:高中數(shù)學(xué)不等式證明常用方法 本科生畢業(yè)設(shè)計(jì)(論文中學(xué)證明不等式的常用方法 所在學(xué)院:數(shù)學(xué)與信息技術(shù)學(xué)院 專(zhuān)業(yè):數(shù)學(xué)與應(yīng)用數(shù)學(xué) 姓名:張俊 學(xué)號(hào):1010510020指導(dǎo)教師:曹衛(wèi)東 ...
2025-10-20 10:42
【總結(jié)】高中數(shù)學(xué)基本不等式的巧用1.基本不等式:≤(1)基本不等式成立的條件:a>0,b>0.(2)等號(hào)成立的條件:當(dāng)且僅當(dāng)a=b時(shí)取等號(hào).2.幾個(gè)重要的不等式(1)a2+b2≥2ab(a,b∈R);(2)+≥2(a,b同號(hào));(3)ab≤2(a,b∈R);(4)≥2(a,b∈R).3.算術(shù)平均數(shù)與幾何平均數(shù)設(shè)a>0,b>0,則a,b的算術(shù)平均數(shù)為,幾何平均數(shù)
2025-04-04 05:08
【總結(jié)】由a=b,b=c,你能得出a與c的關(guān)系嗎?a=c等式的傳遞性不等式有類(lèi)似的性質(zhì)嗎?如何說(shuō)明?若ab,bc,則ac——不等式的傳遞性不等式的基本性質(zhì)1不等式還有否其它性質(zhì)?等式有哪些性質(zhì)?解方程:5x-2=3x+8等式的基本性質(zhì)1、若a=b,則a+c=b+c,
2025-10-28 21:52
【總結(jié)】高中數(shù)學(xué)必修五基本不等式題型(精編)變2.下列結(jié)論正確的是()A.若,則B.若,則C.若,,則D.若,則3.若m=(2a-1)(a+2),n=(a+2)(a-3),則m,n的大小關(guān)系正確的是例2、解下列不等式(1)
2025-04-04 05:12
【總結(jié)】第三章不等式第一教時(shí)教材:不等式、不等式的綜合性質(zhì)目的:首先讓學(xué)生掌握不等式的一個(gè)等價(jià)關(guān)系,了解并會(huì)證明不等式的基本性質(zhì)ⅠⅡ。過(guò)程:一、引入新課1.世界上所有的事物不等是絕對(duì)的,相等是相對(duì)的。2.過(guò)去我們已經(jīng)接觸過(guò)許多不等式從而提出課題二、幾個(gè)與不等式有關(guān)的名稱(chēng)(例略)1.“同向不等式與異向不等式”
2025-04-17 13:03
【總結(jié)】人教版高中數(shù)學(xué)必修5第三章不等式單元測(cè)試題及答案一、選擇題(本大題共10小題,每小題5分,共50分)1.不等式x2≥2x的解集是( )A.{x|x≥2} B.{x|x≤2}C.{x|0≤x≤2} D.{x|x≤0或x≥2}2.下列說(shuō)法正確的是( )A.a(chǎn)b?ac2bc2 B.a(chǎn)b?a2b2C.a(chǎn)>
2025-06-18 13:49
【總結(jié)】不等式的性質(zhì)課件不等式的性質(zhì)(1)世界上所有的事物不等是絕對(duì)的,相等是相對(duì)的。過(guò)去我們已經(jīng)接觸過(guò)許多不等式的問(wèn)題,本章我們將較系統(tǒng)地研究有關(guān)不等式的性質(zhì)、證明、解法和應(yīng)用.1.判斷兩個(gè)實(shí)數(shù)大小的充要條件對(duì)于任意兩個(gè)實(shí)數(shù)a、b,在a>b,a=b,a<b三種關(guān)系中有且僅有一種成立.判斷兩個(gè)實(shí)數(shù)大小的充要條件是:
2024-11-17 11:59
【總結(jié)】基本不等式A組基礎(chǔ)鞏固1.若x0,y0,且2x+8y=1,則xy有()A.最大值64B.最小值164C.最小值12D.最小值64解析:xy=xy??????2x+8y=2y+8x≥22y·8x=8xy,∴xy≥8,即xy≥64,當(dāng)且僅當(dāng)???
2024-12-08 20:20