【總結(jié)】排列組合公式/排列組合計算公式排列P------和順序有關組合C-------不牽涉到順序的問題排列分順序,組合不分例如把5本不同的書分給3個人,有幾種分法."排列"把5本書分給3個人,有幾種分法"組合"1.排列及計算公式從n個不同元素中,任取m(m≤n)個元素按照一定的順序排成一列
2025-08-05 07:21
【總結(jié)】排列組合練習題用2,6,8三個數(shù)能組成哪幾個不同的兩位數(shù)?用0,3,9三個數(shù)能組成哪幾個不同的兩位數(shù)?用1,4,7能組成哪幾個不同的三位數(shù)?用3,6,9能組成哪幾個不同的三位數(shù)?排列組合練習題由3,5,0,6共四張卡片,你能擺出最大的兩位數(shù)和最小的兩位數(shù)嗎?它們的和是(),差是().有4,6,8
2025-08-05 08:17
【總結(jié)】預備知識在概率的計算中經(jīng)常要用到一些排列組合知識,也常常用到牛頓二項式定理。這里羅列一些同學們在中學里已學過的有關公式,并適當作一點推廣。一.兩個原理1.乘法原理:完成一項工作有m個步驟,第一步有種方法,第二步有種方法,…,第m步有種方法,且完成該項工作必須依次通過這m個步驟,則完成該項工作一共
2025-05-16 03:02
【總結(jié)】1排列組合習題課2一復習引入二新課講授排列組合問題在實際應用中是非常廣泛的,并且在實際中的解題方法也是比較復雜的,下面就通過一些實例來總結(jié)實際應用中的解題技巧.3從n個不同元素中,任取m個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列.:從n
2025-08-05 06:17
【總結(jié)】高中數(shù)學教案第十章排列組合和概率(第1課時)王新敞課題:?10.1加法原理和乘法原理(一)教學目的:1了解學習本章的意義,激發(fā)學生的興趣.,培養(yǎng)學生的歸納概括能力..教學重點:分類計數(shù)原理(加法原理)與分步計數(shù)原理(乘法原理)教學難點:分類計數(shù)原理(加法原理)與分步計數(shù)原理(乘法原理)的準確理解授課類型:
2025-08-05 07:17
【總結(jié)】WORD格式可編輯排列組合方法篇1、兩個原理及區(qū)別(加法原理)(乘法原理)2、排列數(shù)公式排列數(shù)公式==.(,∈N*,且).注:規(guī)定.排列恒等式(1);(2).會推以下恒等式(1);(2);(3);(4)
2025-08-05 07:38
【總結(jié)】《排列組合的綜合運用》練習題一、選擇題:1.()A.70B.58C.56D.24,要求身高最高的在中間,且往兩邊身高依次遞減,則不同的排法有()A.18種B.20種
2025-06-19 08:47
【總結(jié)】 例1.從1、2、3、……、20這二十個數(shù)中任取三個不同的數(shù)組成等差數(shù)列,這樣的不同等差數(shù)列有________個。 分析:首先要把復雜的生活背景或其它數(shù)學背景轉(zhuǎn)化為一個明確的排列組合問題。 設a,b,c成等差,∴2b=a+c,可知b由a,c決定, 又∵2b是偶數(shù),∴a,c同奇或同偶,即:分別從1,3,5,……,19或2,4,6,8,……,20這十個數(shù)中選出兩個數(shù)
2025-08-05 06:55
【總結(jié)】排列組合專題訓練1.(2014?四川)六個人從左至右排成一行,最左端只能排甲或乙,最右端不能排甲,則不同的排法共有( ?。.192種B.216種C.240種D.288種考點:排列、組合及簡單計數(shù)問題.菁優(yōu)網(wǎng)版權(quán)所有專題:應用題;排列組合.分析:分類討論,最左端排甲;最左端只排乙,最右端不能排甲,根據(jù)加法原理可得結(jié)論.
2025-08-05 07:27
【總結(jié)】高二數(shù)學排列與組合練習題黎崗排列練習1、將3個不同的小球放入4個盒子中,則不同放法種數(shù)有()A、81B、64C、12D、14 2、n∈N且n55,則乘積(55-n)(56-n)……(69-n)等于()A、B、C、D、 3、用1,2,3,4四個數(shù)字可以組成數(shù)字不重復的自然數(shù)的個數(shù)()A
2025-08-05 18:22
【總結(jié)】高二數(shù)學集體備課學案與教學設計章節(jié)標題選修2-3排列組合專題計劃學時1學案作者楊得生學案審核張愛敏高考目標掌握排列、組合問題的解題策略三維目標一、知識與技能。?;能運用解題策略解決簡單的綜合應用題。提高學生解決問題分析問題的能力??.二、過程與方法通過問題的探究,體會知識的類比遷移。以
【總結(jié)】排列組合教案(加法原理)完成一件事,有類辦法,在第1類辦法中有種不同的方法,在第2類辦法中有種不同的方法,…,在第類辦法中有種不同的方法,那么完成這件事共有:種不同的方法.例:,一名高中畢業(yè)生了解到,在A大學里有4種他所感興趣的專業(yè),在B大學里有5種感興趣的專業(yè),如果這名學生只能選擇一個專業(yè),那么他共有多少種選擇?,有5人只會用第一種方法完成,另有4人只會用第二種方法
【總結(jié)】思銳精英教育排列組合典型題大全一.可重復的排列求冪法:重復排列問題要區(qū)分兩類元素:一類可以重復,另一類不能重復,把不能重復的元素看作“客”,能重復的元素看作“店”,則通過“住店法”可順利解題,在這類問題使用住店處理的策略中,關鍵是在正確判斷哪個底數(shù),哪個是指數(shù)【例1】(1)有4名學生報名參加數(shù)學、物理、化學競賽,每人限報一科,有多少種不同的報名方法?(2)有4
2025-06-25 23:10
【總結(jié)】完美WORD格式《排列組合》一、排列與組合,有多少種不同選法?,1人下鄉(xiāng)演出,1人在本地演出,有多少種不同選派方法?3.現(xiàn)從男、女8名學生干部中選出2名男同學和1名女同學分別參加全?!百Y源”、“生態(tài)”和“環(huán)?!比齻€夏令營活動,已知共有90種不同的方案,那么男、女同
2025-06-25 22:56
【總結(jié)】排列組合高考試題精選(二)1、五人并排站成一排,如果必須相鄰且在的右邊,那么不同的排法種數(shù)有()A、60種B、48種C、36種D、24種2、七人并排站成一行,如果甲乙兩個必須不相鄰,那么不同的排法種數(shù)是()A、1440種B、3600種C、4820種D、4800種3、將數(shù)字1,2,3
2025-06-25 22:54