【摘要】一,映射與排列組合問題變式:同(2)257對集合A中元素進行分類。二,排列組合中的映射思維通過集合A與另一個集合B之間的映射關(guān)系,將對集合A中元素的計數(shù)問題轉(zhuǎn)化為對集合B的計數(shù)。且A與B是一一對應(yīng)關(guān)系。三,構(gòu)造法解排列組合題例6,有若干名棋手參加的單循環(huán)制象棋比賽,其中有2名棋手各比賽
2024-11-10 03:08
【摘要】例“歡樂今宵”節(jié)目中,拿出兩個信箱.其中存放著先后兩次競猜中成績優(yōu)秀的觀眾來信.甲信箱中有30封,乙信箱中有20封.現(xiàn)由主持人抽獎確定幸運觀眾,若先確定一名“幸運之星”,然后再從兩信箱中各確定一名幸運伙伴,有多少種不同的結(jié)果?練習(xí).如圖,一個地區(qū)分為5個行政區(qū)域,現(xiàn)給地圖著色,要求相鄰區(qū)域不得使用同一種
2024-11-09 06:20
【摘要】排列組合復(fù)習(xí)學(xué)案1重復(fù)排列“求冪運算”重復(fù)排列問題要區(qū)分兩類元素:一類可以重復(fù),另一類不能重復(fù)。把不能重復(fù)的元素看作“客”,能重復(fù)的元素看作“店”,則通過“住店法”可順利解題。例18名同學(xué)爭奪3項冠軍,獲得冠軍的可能性有()2.特殊元素(位置)用優(yōu)先法:把有限制條件的元素(位置)稱為特殊元素(位置),可優(yōu)先將它(們)安排好,后再安排其它元素。
2025-04-17 01:31
【摘要】12除做到:排列組合分清,加乘原理辯明,避免重復(fù)遺漏外,還應(yīng)注意積累排列組合問題得以快速準(zhǔn)確求解。直接法特殊元素法例1用1,2,3,4,5,6這6個數(shù)字組成無重復(fù)的四位數(shù),試求滿足下列條件的四位數(shù)各有多少個(1)數(shù)字1不排在個位和千位(2)數(shù)字1不在個位,數(shù)字6不在千位。分析:(1)個位和千位有5個數(shù)字可供選擇,其余2位有四個可供選擇,由乘法原理:=240
2025-03-25 02:36
【摘要】排列組合排列定義???從n個不同的元素中,取r個不重復(fù)的元素,按次序排列,稱為從n個中取r個的無重排列。排列的全體組成的集合用P(n,r)表示。排列的個數(shù)用P(n,r)表示。當(dāng)r=n時稱為全排列。一般不說可重即無重。可重排列的相應(yīng)記號為P(n,r),P(n,r)。組合定義從n個不同元素中取r個不重復(fù)的元素組成一個子集,而不考慮其元素的順序,稱
2025-06-25 23:09
【摘要】主題課題:兩個原理和排列知識內(nèi)容:1、分類計數(shù)原理和分步計數(shù)原理2、排列、排列數(shù)概念3、排列數(shù)的計算公式4.排列應(yīng)用題能力目標(biāo):1、通過兩個原理的學(xué)習(xí),培養(yǎng)學(xué)生的解決實際問題的能力;2、通過排列的學(xué)習(xí),可以遷移知識,更好的運用兩個原理,并能解決稍復(fù)雜的數(shù)學(xué)問題。3、培養(yǎng)學(xué)生的分析問題能力、解決問題的能力。數(shù)學(xué)思想:轉(zhuǎn)化思想
【摘要】人教版高中數(shù)學(xué)全部教案兩個基本原理一、教學(xué)目標(biāo)1、知識傳授目標(biāo):正確理解和掌握加法原理和乘法原理2、能力培養(yǎng)目標(biāo):能準(zhǔn)確地應(yīng)用它們分析和解決一些簡單的問題3、思想教育目標(biāo):發(fā)展學(xué)生的思維能力,培養(yǎng)學(xué)生分析問題和解決問題的能力二、教材分析:加法原理,乘法原理。解決方法:利用簡單的舉例得到一般的結(jié)論.:加法原理,乘法原理的區(qū)分。解決方法:運用對比的方法比
2025-04-16 13:29
【摘要】WORD格式整理版排列組合方法匯總與習(xí)題精選捆綁法、插空法、隔板法、分類法、集合法、枚舉法、圓排列、可重復(fù)排列1、五人并排站成一排,如果必須相鄰且在的右邊,那么不同的排法種數(shù)有()A、60種B、48種C、36種D、24種2、七人并排站成一行,如果甲乙兩個必須不相鄰,那么不同的排法種數(shù)是()A、1440種B、
2025-07-26 11:28
【摘要】1排列組合1.將3個不同的小球放入4個盒子中,則不同放法種數(shù)有()A.81B.64C.12D.142.5個人排成一排,其中甲、乙兩人至少有一人在兩端的排法種數(shù)有()A.33AB.334AC.
2024-11-23 12:24
【摘要】二項式定理歷年高考試題薈萃(三)一、填空題(本大題共24題,共計102分)1、(1+2x)5的展開式中x2的系數(shù)是________.(用數(shù)字作答)2、的展開式中的第5項為常數(shù)項,那么正整數(shù)的值是??????????.3、已知,則(的值等于?
2025-07-26 08:16
【摘要】專業(yè)資料整理分享排列組合典型題大全一.可重復(fù)的排列求冪法:重復(fù)排列問題要區(qū)分兩類元素:一類可以重復(fù),另一類不能重復(fù),把不能重復(fù)的元素看作“客”,能重復(fù)的元素看作“店”,則通過“住店法”可順利解題,在這類問題使用住店處理的策略中,關(guān)鍵是在正確判斷哪個底數(shù),
2025-06-25 23:05
【摘要】排列組合問題經(jīng)典題型與通用方法:題目中規(guī)定相鄰的幾個元素捆綁成一個組,當(dāng)作一個大元素參與排列.,如果必須相鄰且在的右邊,則不同的排法有()A、60種B、48種C、36種D、24種:元素相離(即不相鄰)問題,可先把無位置要求的幾個元素全排列,再把規(guī)定的相離的幾個元素插入上述幾個元
2025-06-25 22:57
【摘要】課時作業(yè)(一)1.衡水二中高一年級共8個班,高二年級共6個班,從中選一個班級擔(dān)任學(xué)校星期一早晨升旗任務(wù),共有的安排方法種數(shù)是( )A.8 B.6C.14 D.48答案 C解析 一共有14個班,從中選1個,∴共有14種.2.教學(xué)大樓共有四層,每層都有東西兩個樓梯,由一層到四層共有的走法種數(shù)是( )A.32 B.23C.42 D.2
2025-07-23 03:44
【摘要】排列組合問題在實際應(yīng)用中是非常廣泛的,并且在實際中的解題方法也是比較復(fù)雜的,下面就通過一些實例來總結(jié)實際應(yīng)用中的解題技巧。:從n個不同元素中,任取m個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列。:從n個不同元素中,任取m個元素,并成一組,叫做從n個不同元素中取出m個元素的一個組合。:::與順序有關(guān)的為排列問題,與順序無關(guān)的為組合問題。例1學(xué)
2025-08-05 18:17
【摘要】回顧引入:前面我們已經(jīng)學(xué)習(xí)和掌握了排列組合問題的求解方法,下面我們要在復(fù)習(xí)、鞏固已掌握的方法的基礎(chǔ)上,學(xué)習(xí)和討論排列、組合的綜合問題和應(yīng)用問題。問題:解決排列組合問題一般有哪些方法?應(yīng)注意什么問題?解排列組合問題時,當(dāng)問題分成互斥各類時,根據(jù)加法原理,可用分類法;當(dāng)問題考慮先后次序時,根據(jù)乘法
2025-08-05 16:06