【總結(jié)】第一篇:中考數(shù)學經(jīng)典幾何證明題 2011年中考數(shù)學經(jīng)典幾何證明題 (一)1.(1)如圖1所示,在四邊形ABCD中,AC=BD,AC與BD相交于點O,E、F分別是AD、BC的中點,聯(lián)結(jié)EF,分別交A...
2024-10-28 23:38
【總結(jié)】數(shù)學難題 一.填空題(共2小題)1.如圖,矩形紙片ABCD中,AB=,BC=.第一次將紙片折疊,使點B與點D重合,折痕與BD交于點O1;O1D的中點為D1,第二次將紙片折疊使點B與點D1重合,折痕與BD交于點O2;設O2D1的中點為D2,第三次將紙片折疊使點B與點D2重合,折痕與BD交于點O3,….按上述方法折疊,第n次折疊后的折痕與BD交于點On,則BO1= _______
2025-06-22 17:09
【總結(jié)】初中數(shù)學:常用幾何題的原理及解題思路幾何證明題入門難,證明題難做,已經(jīng)成為許多同學的共識…今天小瑞老師和同學們分享的是幾何證明題思路及常用的原理,希望對大家有幫助!證明題的思路很多幾何證明題的思路往往是填加輔助線,分析已知、求證與圖形,探索證明。對于證明題,有三種思考方式:。對于一般簡單的題目,我們正向思考,輕而易舉可以做出,這里就不詳細講述了。。顧名思義,就是從相反的方
2024-08-02 22:21
【總結(jié)】八年級數(shù)學幾何經(jīng)典題【含答案】ANFECDMB1、已知:如圖,在四邊形ABCD中,AD=BC,M、N分別是AB、CD的中點,AD、BC的延長線交MN于E、F.求證:∠DEN=∠F.PCGFBQADE2、如圖,分別以△ABC的AC和BC為一邊,在△ABC的外側(cè)作正方形ACDE和正方形
2025-06-24 04:28
【總結(jié)】…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………學校:___________姓名:________班級:________考號:________…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………絕密★啟用前2018年05月17日張朋松的初中數(shù)學組卷試卷副標題考試范圍:x
2025-03-25 07:11
【總結(jié)】初二數(shù)學經(jīng)典題型練習1.已知:如圖,P是正方形ABCD內(nèi)點,∠PAD=∠PDA=150.求證:△PBC是正三角形.證明如下。APCDB首先,PA=PD,∠PAD=∠PDA=(180°-150°)÷2=15°,∠PAB=90°-15°=75°。在正方形ABCD之外以AD為底邊作正
2025-06-24 14:46
【總結(jié)】初中數(shù)學:幾何證明題的思路要掌握初中數(shù)學幾何證明題技巧,熟練運用和記憶如下原理是關(guān)鍵。下面瑞德特老師整理了各類幾何證明題的解題思路及常用的定理,供同學們參考。幾何證明題的思路很多幾何證明題的思路往往是填加輔助線,分析已知、求證與圖形,探索證明。對于證明題,有三種思考方式:(1)正向思維。對于一般簡單的題目,我們正向思考,輕而易舉可以做出,這里就不詳細講述了。(2)逆向
2025-04-04 03:50
【總結(jié)】平面解析幾何1、直線的傾斜角與斜率1、直線的傾斜角與斜率(1)傾斜角的范圍(2)經(jīng)過兩點的直線的斜率公式是(3)每條直線都有傾斜角,但并不是每條直線都有斜率(1)兩條直線平行對于兩條不重合的直線,其斜率分別為,則有。特別地,當直線的斜率都不存在時,的關(guān)系為平行。(2)兩條直線垂直如果兩條直線斜率存在,設為,則注:兩條直線垂直的充要條件是斜率之
2025-06-22 16:58
【總結(jié)】中考數(shù)學經(jīng)典幾何證明題(一)1.(1)如圖1所示,在四邊形中,=,與相交于點,分別是的中點,聯(lián)結(jié),分別交、于點,試判斷的形狀,并加以證明;(2)如圖2,在四邊形中,若,分別是的中點,聯(lián)結(jié)FE并延長,分別與的延長線交于點,請在圖2中畫圖并觀察,圖中是否有相等的角,若有,請直接寫出結(jié)論:;(3)如圖3,在中,,點在上,,分別是的中點,聯(lián)結(jié)并延長,與
2025-04-04 03:01
【總結(jié)】第1頁共3頁初中數(shù)學幾何證明步驟規(guī)范性初步基礎(chǔ)題一、單選題(共4道,每道25分),已知線段AB=18cm,C是線段AB的中點,則AC的長是多少?解:如圖,∵()∴()又∵()∴()即AC的長為9cm.①;②C是線段AB的中點;③AB=
2024-08-20 21:27
【總結(jié)】初中幾何證明技巧及經(jīng)典試題證明兩線段相等1.兩全等三角形中對應邊相等。。。。。。。。*(或等圓)中等弧所對的弦或與圓心等距的兩弦或等圓心角、圓周角所對的弦相等。*。(或兩后項)相等的比例式中的兩后項(或兩前項)相等。*(外)公切線的長相等。。證明兩個角相等。。,底邊上的中線(或高)平分
2025-03-24 12:33
【總結(jié)】初中幾何練習題一.三角形一、填空題:1、三角形的三邊為1,,9,則的取值范圍是。2、已知三角形兩邊的長分別為1和2,如果第三邊的長也是整數(shù),那么第三邊的長為。3、在△ABC中,若∠C=2(∠A+∠B),則∠C=度。4、如果△ABC的一個外角等于1500,且∠B=∠C,則∠A=
2025-03-24 12:34
【總結(jié)】幾何證明練習題及答案【知識要點】,并能夠熟練應用;;,能夠應用綜合法熟練地證明幾何命題。【概念回顧】:對應邊(),對應角()對應高線(),對應中線(),對應角的角平分線()?!鰽BC中,∠C=90°,∠A=30°,則BC:AC:AB=()?!纠}解析】【題1】已知
2025-06-23 18:44
【總結(jié)】第一篇:初中數(shù)學幾何證明步驟規(guī)范性初步基礎(chǔ)題(含答案) 初中數(shù)學幾何證明步驟規(guī)范性初步基礎(chǔ)題 一、單選題(共4道,每道25分) ,已知線段AB=18cm,C是線段AB的中點,則AC的長是多少? ...
2024-11-15 12:47
【總結(jié)】武漢中考數(shù)學22題專題-二次函數(shù)應用2.(2001?安徽)某工廠生產(chǎn)的A種產(chǎn)品,它的成本是2元,售價是3元,年銷量為100萬件,為了獲得更好的效益,廠家準備拿出一定的資金做廣告;根據(jù)統(tǒng)計,每年投入的廣告費是x(十萬元),產(chǎn)品的年銷量將是原銷售量的y倍,且y是x的二次函數(shù),它們的關(guān)系如表:x(十萬元)012y1(1)求y與x的函數(shù)關(guān)系式;(2)如果把
2024-08-14 02:44