【總結(jié)】知識(shí)回顧1.圓的標(biāo)準(zhǔn)方程;2.圓的一般方程;3.點(diǎn)P0(x0,y0)與圓(x-a)2+(y-b)2=r2的位置關(guān)系判斷;4.直線Ax+By+C=0與圓(x-a)2+(y–b)2=r2的位置關(guān)系。問(wèn)題探究請(qǐng)求出公共弦長(zhǎng)。的位置關(guān)系,若相交,與圓
2025-03-12 14:58
【總結(jié)】正弦函數(shù)、余弦函數(shù)的性質(zhì)(2)-----1-1-----1-1-----1-1正弦函數(shù)的圖象性質(zhì):(1)定義域(2)值域R.[-1,1].當(dāng)且僅當(dāng)時(shí)取得最大值1,當(dāng)且僅當(dāng)時(shí)取得最小值-1.
2025-06-06 00:28
【總結(jié)】正弦函數(shù)、余弦函數(shù)的圖象新課講授圖象的幾何作法???2,0sin??xxy,由于在單位圓中,角x的正弦線表示其正弦值,因此可將正弦線移動(dòng)到直角坐標(biāo)系中確定對(duì)應(yīng)的點(diǎn)(x,sinx),從而作出函數(shù)圖象.PM3?1Oxy1如:作正弦線
2025-06-05 23:39
【總結(jié)】&圓與圓的位置關(guān)系直線與圓的方程的應(yīng)用[提出問(wèn)題]上圖為1973年12月24日在哥斯答黎加拍到的日環(huán)食全過(guò)程.可以用兩個(gè)圓來(lái)表示變化過(guò)程.問(wèn)題1:根據(jù)上圖,結(jié)合平面幾何,圓與圓的位置關(guān)系有幾種?提示:5種,即內(nèi)含、內(nèi)切、相交、外切、相離.問(wèn)題2:能否通過(guò)一些數(shù)量關(guān)系表示這些圓的位置關(guān)系?
2024-11-18 08:10
【總結(jié)】正弦函數(shù)、余弦函數(shù)的性質(zhì)(3)正弦函數(shù)的圖象性質(zhì):(1)定義域(2)值域R.[-1,1].當(dāng)且僅當(dāng)時(shí)取得最大值1,當(dāng)且僅當(dāng)時(shí)取得最小值-1.Zkkx???,??22Zkkx????,??22(3)奇偶性奇函數(shù).(5
【總結(jié)】函數(shù)y=Asin(ωx+φ)的圖象(1)知識(shí)與方法回顧1.“五點(diǎn)法”作函數(shù)y=sinx簡(jiǎn)圖的步驟,其中“五點(diǎn)”是指什么?)0,2(),1,23(),0,(),1,2(),0,0(?????2??23?11?.yxO?2....2.函數(shù)圖象的平移變換法則
【總結(jié)】正切函數(shù)的圖象和性質(zhì)一、回顧正弦函數(shù)的圖象的作法(2)利用正弦線畫(huà)正弦函數(shù)的圖象(1)利用描點(diǎn)法畫(huà)正弦函數(shù)的圖象xy.023??2?2?1-1....oxy---11---1--?21oA步驟:(1)等分3?2?32?65
2025-06-05 23:52
【總結(jié)】函數(shù)y=Asin(ωx+φ)的圖象(2)()()yfxyfx?????化歸思想:怎樣由()0yfx???將圖象上的每一個(gè)點(diǎn)向左()(或向右0||()yfx??????())平移個(gè)單位即得到:函數(shù)y=sin(x+φ),x∈R(其
2025-06-06 00:10
【總結(jié)】4.直線與圓的位置關(guān)系第一課時(shí)直線與圓的位置關(guān)系(新授課)[提出問(wèn)題]“大漠孤煙直,長(zhǎng)河落日?qǐng)A”是唐朝詩(shī)人王維的詩(shī)句,它描述了黃昏日落時(shí)分塞外特有的景象.如果我們把太陽(yáng)看成一個(gè)圓,地平線看成一條直線,觀察下面三幅太陽(yáng)落山的圖片.問(wèn)題1:圖片中,地平線與太陽(yáng)的位置關(guān)系怎樣?提示:(1)相離(2)相切(3)相交
2024-11-17 23:16
【總結(jié)】4.直線與圓的位置關(guān)系第二課時(shí)直線與圓的位置關(guān)系(習(xí)題課)1.直線與圓的位置關(guān)系有哪幾種?2.如何用幾何法和代數(shù)法判斷直線與圓的位置關(guān)系?
2024-11-17 19:03
【總結(jié)】知識(shí)回顧1.圓的標(biāo)準(zhǔn)方程;2.圓的一般方程;3.點(diǎn)P0(x0,y0)與圓(x-a)2+(y-b)2=r2的位置關(guān)系判斷。問(wèn)題探究標(biāo)。,請(qǐng)求其坐的位置關(guān)系,若有交點(diǎn)與圓試判斷直線,:,圓:?。┲本€(,請(qǐng)求其坐標(biāo)。的位置關(guān)系,若有交點(diǎn)與圓判斷直線,試:,圓:?。┲本€(請(qǐng)求其坐標(biāo)。,的位
【總結(jié)】直線與圓的位置關(guān)系一、教材分析學(xué)生在初中的學(xué)習(xí)中已了解直線與圓的位置關(guān)系,并知道可以利用直線與圓的交點(diǎn)的個(gè)數(shù)以及圓心與直線的距離d與半徑r的關(guān)系判斷直線與圓的位置關(guān)系,但是,在初中學(xué)習(xí)時(shí),利用圓心與直線的距離d與半徑r的關(guān)系判斷直線與圓的位置關(guān)系的方法卻以結(jié)論性的形式呈現(xiàn).在高一學(xué)習(xí)了解析幾何以后,要考慮的問(wèn)題是如何掌握由直線
2024-12-08 02:40
【總結(jié)】直線與圓的位置關(guān)系備用習(xí)題m>0,則直線2(x+y)+1+m=0與圓x2+y2=m的位置關(guān)系為()分析:圓心到直線的距離為d=21m?,圓半徑為m.∵d-r=21m?-m=21(m-2m+1)=
2024-12-08 20:20
【總結(jié)】任意角的三角函數(shù)(2)1、任意角的三角函數(shù)的定義設(shè)α是任意一個(gè)角,α的終邊與單位圓交于點(diǎn)P(x,y),那么(1)正弦:sinα=(2)余弦:cosα=(3)正切:tanα=P(x,y)0xyαA(1,0)正弦、余弦、正切都是以角(弧度)為自變量,以單位圓上的點(diǎn)
2025-06-05 23:38
2024-11-17 03:40