【總結】課題函數(shù)y=Asin(ωx+φ)的圖象(2)教學目標知識與技能會用“五點法”畫函數(shù)y=Asin(ωx+φ)的圖象.能根據(jù)y=Asin(ωx+φ)的部分圖象,確定其解析式.過程與方法情感態(tài)度價值觀重點能根據(jù)y=Asin(ωx+
2024-12-05 01:56
【總結】任意角的三角函數(shù)(2)1、任意角的三角函數(shù)的定義設α是任意一個角,α的終邊與單位圓交于點P(x,y),那么(1)正弦:sinα=(2)余弦:cosα=(3)正切:tanα=P(x,y)0xyαA(1,0)正弦、余弦、正切都是以角(弧度)為自變量,以單位圓上的點
2025-06-05 23:38
【總結】函數(shù)y=Asin(ωx+φ)的圖象1.把y=sinx的圖象向左平移π2個單位,得到的圖象的解析式為()A.y=-cosxB.y=sinx+π2C.y=sinx-π2D.y=cosx解析:y=sinx――→向左平移π2個單位y=sin??????x+π2=cosx
2024-12-05 06:48
【總結】Oxy一艘輪船在沿直線返回港口的途中,接到氣象臺的臺風預報:臺風中心位于輪船正西70km處,受影響的范圍是半徑長為30km的圓形區(qū)域.已知港口位于臺風中心正北40km處,如果這艘輪船不改變航線,那么它是否會受到臺風的影響?為解決這個問題,我們以臺風中心為原點O,東西方向為x軸,建立如圖所示的直角坐標系,其中
2025-06-06 00:10
【總結】:①設圓C1∶x2+y2+D1x+E1y+F1=0和圓C2∶x2+y2+D2x+E2y+F2=0.若兩圓相交,則過交點的圓系方程為x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ為參數(shù),圓系中不包括圓C2,λ=-1為兩圓的公共弦所在直線方程).若兩圓相切呢?:②
2025-06-05 23:39
【總結】函數(shù)y=Asin(ωx+φ)的圖象1.若直線y=a與函數(shù)y=sinx的圖象相交,則相鄰的兩交點間的距離的最大值為()B.πD.2π解析:所求最大值,即為y=sinx的一個周期的長度2π.答案:D2.已知簡諧運動f(x)=2sin??????π3x+φ??????
【總結】三角函數(shù)的圖象和性質變式1.三角函數(shù)圖像變換將函數(shù)12cos()32yx???的圖像作怎樣的變換可以得到函數(shù)cosyx?的圖像?變式1:將函數(shù)cosyx?的圖像作怎樣的變換可以得到函數(shù)2cos(2)4yx???的圖像?解:(1)先將函數(shù)cosyx?圖象上各點的縱坐標擴大為原來的2倍(橫坐標不變),即
【總結】2.2.4平面與平面平行的性質自學導引1.P60-61閱讀課本2.提煉并理解面面平行的性質定理,試著用自己的語言敘述一下.3.6通過課本例進一步理解線線、線面、面面平行之間的相互轉化4.P61完
2025-06-06 00:28
【總結】???b?ab????ba//?直線與平面平行的性質?b?a.,,//baa???????已知:ba//:求證線面平行性質定理:一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行.例這個平面,求證:另一條也平行于這個平面.例,求證:它和這兩個平面的交線平行.
【總結】問題引入:些位置關系?空間中直線與平面有哪(1)直線在平面內——有無數(shù)個公共點(2)直線與平面相交——有且只有一個公共點(3)直線與平面平行——沒有公共點直線與平面平行的定義:直線與平面沒有公共點.思考1:容易檢驗直線與平面有無公共點嗎?莊子答曰:以有涯求無涯,殆矣!思考2:有一塊木料如圖,P為面
2025-06-06 00:09
【總結】同角三角函數(shù)的基本關系式任意角的三角函數(shù)的定義設α是任意一個角,α的終邊與單位圓交于點P(x,y),那么(1)正弦:sinα=(2)余弦:cosα=(3)正切:tanα=P(x,y)0xyαA(1,0)y;x;yx(0)x?由正弦、余弦、正切
【總結】【優(yōu)化指導】2021年高中數(shù)學函數(shù)y=Asin(ωx+φ)的圖象(一)課時跟蹤檢測新人教A版必修4考查知識點及角度難易度及題號基礎中檔稍難“五點法”畫y=Asin(ωx+φ)的圖象10平移變換和伸縮變換1、2、3、4、56、7、9綜合問題8、11
2024-12-09 03:44
【總結】【優(yōu)化指導】2021年高中數(shù)學函數(shù)y=Asin(ωx+φ)的圖象(一)學業(yè)達標測試新人教A版必修41.把y=sinx的圖象向左平移π2個單位,得到的圖象的解析式為()A.y=-cosxB.y=sinx+π2C.y=sinx-π2D.y=cosx解析:y=sinx――
2024-12-09 03:45
【總結】:)(047)1()12(:,25)2()1(:.122RmmymxmlyxC???????????直線已知圓練習;)1(相交與圓證明直線Cl.,)2(的方程直線截得的弦長最小時被圓求直線lCl題型三、最長弦、最短弦問題222430102.xyxyxy例1、圓上到直線的距離為的點共
【總結】圓的一般方程214..222)()(rbyax????2222222rbbyyaaxx??????展開得整理得0)(2222222???????rbabyaxyx圓的標準方程可表示為一般地,022?????FEyDxyx.022確定圓的圓心和半徑思考:如何由?????FEyDxyx是否有限制?半徑的過程對參數(shù)思考:上