freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

液壓油與液壓流體力學(xué)基礎(chǔ)(編輯修改稿)

2025-05-27 02:36 本頁面
 

【文章內(nèi)容簡介】 正決定液流流動狀態(tài)的是用管內(nèi)的平均流速 v、 液體的運(yùn)動粘度 ν、 管徑 d三個(gè)數(shù)所組成的一個(gè)稱為雷諾數(shù) Re的無量綱數(shù) , 即 ?vdRe ?臨界雷諾數(shù): 當(dāng)液流的實(shí)際流動時(shí)的雷諾數(shù)小于臨界雷諾數(shù)時(shí),液流為層流,反之液流則為紊流。 常見的液流管道的臨界雷諾數(shù)可由實(shí)驗(yàn)求得。 雷諾數(shù)物理意義: 影響液體流動的力主要有慣性力和粘性力,雷諾數(shù)就是慣性力對粘性力的無因次比值。 29 對于非圓截面管道來說, Re可用下式來計(jì)算: Re= 4vR/ν 式中 R為通流截面的 水力半徑 。它等于液流的有效截面積 A和它的濕周 χ(通流截面上與液體接觸的固體壁面的周長)之比,即 : R= A/χ 水力半徑對管道通流能力影響很大,水力半徑大,表明液流與管壁接觸少,通流能力大;水力半徑小,表明液流與管壁接觸多,通流能力小,易堵塞。 Da ?? ?)( CDBCABb ????)( ABCc ??)(30 二、連續(xù)性方程 連續(xù)性方程是質(zhì)量守恒定律在流體力學(xué)中的一種具體表現(xiàn)形式 。 如圖所示的液體在具有不同通流截面的任意形狀管道中作定常流動時(shí) , 可任取 2兩個(gè)不同的通流截面 , 其面積分別為 A1和 A2, 在這兩個(gè)截面處的液體密度和平均流速分別為 ρ υ1和 ρ υ2 , 根據(jù)質(zhì)量守恒定律 , 在單位時(shí)間內(nèi)流過這兩個(gè)截面的液體質(zhì)量相等 ,即: 當(dāng)忽略液體的可壓縮性時(shí) , 即 ρ1=ρ2 , 則有: 由此得: q1= q2或 q =? A = const( 常數(shù) ) ? ? ? ?1 1 1 2 2 2A A?? ?1 1 2 2A A?液流連續(xù)性原理 31 三、伯努力方程 伯努利方程是能量守恒定律在流體力學(xué)中的一種具體表現(xiàn)形式 。 為了研究方便 , 我們先討論理想液體的伯努利方程 , 然后再對它進(jìn)行修正 , 最后給出實(shí)際液體的伯努利方程 。 (1) 理想液體的伯努利方程 設(shè)理想液體在如圖所示的管道中作定常流動 。 任取兩通流截面 1- 1和 2- 2之間的液流作為研究對象 , 設(shè) 兩截面的中心到基準(zhǔn)面之間的高度分別為 h1和 h2, 兩通流截面面積分別為 A1和 A2, 其壓力分別為 p1和 p2。 由于是理想液體 , 在通流截面上的液體流速是均勻分布的 , 因此可設(shè)兩通流截面上液體的流速分別為 ?1和 ?2。 假設(shè)經(jīng)過很短的時(shí)間 ?t后 , 在 1~2段之間的液體移動到 1?~2?位置 。 現(xiàn)在分析該段液體在 Δt時(shí)間前后能量的變化情況 。 理想液體的一維流動 32 ( a)外力所作的功。 作用在該段液體上的外力有側(cè)面力和兩端面上的壓力,因理想液體無粘性,側(cè)面不產(chǎn)生摩擦力,所以外力所做的功只是兩端面上壓力做功的代數(shù)和,即 由液體連續(xù)性方程可知 或 式中 ?V—— 1- 1?或 2- 2?微小段液體的體積。因此有 W p A t p A t? ?1 1 1 2 2 2? ?? ?A A q1 1 2 2? ?? ?A t A t q t V1 1 2 2? ?? ? ? ?? ? ?W p p V? ?( )1 2 ?33 ( b)液體機(jī)械能的變化。 因是理想液體的定常流動,經(jīng)過 ?t時(shí)間后,中間 1?- 2段液體的力學(xué)參數(shù)均未發(fā)生變化,故這段液體的能量沒有增減。液體機(jī)械能的變化僅表現(xiàn)在 1- 1?和 2- 2?兩小段液體的能量差別上。由于前后兩段液體有相同的質(zhì)量,即 所以兩段液體的位能差 ΔE位 和動能差 ΔE動 分別為 ? ? ? ? ?m A t A t q t V? ? ? ?? ? ? ? ? ?1 1 1 2 2 2? ? ?E gq t h h g V h h位 ? ? ? ?? ?( ) ( )2 1 2 1? ? ?E q t V動 ? ? ? ?12 122 2 1 2 2 2 1 2? ? ? ? ? ?( ) ( )34 根據(jù)能量守恒定律,外力對液體所做的功等于該液體能量的變化量,即 W = ΔE位 + ΔE動 ,帶入相關(guān)公式,可得 將上式各項(xiàng)分別除以微小段液體的體積 ?V,整理后得理想液體伯努利方程為 或?qū)懗? 理想液體伯努利方程的物理意義是:理想液體作恒定流動時(shí)具有壓力能 、 位能和動能三種能量形式 , 在任一截面上這三種能量形式之間可以相互轉(zhuǎn)換 , 但三者之和為一定值 , 即能量守恒 。 ( p p V g V h h V1 2 2 1 2 2 1 212? ? ? ? ?) ( ) ( )? ? ?? ? ? ?p gh p gh1 1 1 2 2 2 2 212 12? ? ? ? ?? ?? ? ??21 c o n s t ( )2p g h? ? ?? ? ? 常數(shù)35 (2) 實(shí)際液體的伯努利方程 實(shí)際液體在流動時(shí) , 由于液體存在粘性 , 會產(chǎn)生內(nèi)摩擦力 , 消耗能量;同時(shí) , 管道局部形狀和尺寸的驟然變化 , 使液體產(chǎn)生擾動 , 也消耗能量 。 因此 , 實(shí)際液體在流動時(shí)有能量損失 , 這里可設(shè)單位體積液體在兩通流截面間流動時(shí)的能量損失為 Δpw。 此外,由于實(shí)際液體在管道通流截面上的流速是不均勻的,在用平均流速代替實(shí)際流速計(jì)算動能時(shí),必然會產(chǎn)生誤差。為了修正這個(gè)誤差,需引入動能修正系數(shù)?。因此,實(shí)際液體的伯努利方程為 式中,動能修正系數(shù) ?1和 ?2的值與液體流動狀態(tài)有關(guān),當(dāng)液體紊流時(shí)取 ? = 1,層流時(shí)取 ? = 2。 p gh p gh p w1 1 1 1 2 2 2 2 2 212 12? ? ? ? ? ?? ?? ? ? ?? ? ?36 實(shí)際液體的伯努利方程的物理意義是:實(shí)際液體在管道中作定常流動時(shí),具有壓力能、動能和位能三種形式的機(jī)械能。在流動過程中這三種能量可以相互轉(zhuǎn)化。但是上游截面這三種能量的總和等于下游截面這三種能量總和加上從上游截面流到下游截面過程中的能量損失。 伯努利方程揭示了液體流動過程中的能量變化規(guī)律。它指出,對于流動的液體來說,如果沒有能量的輸入和輸出,液體內(nèi)的總能量是不變的。它是流體力學(xué)中一個(gè)重要的基本方程。它不僅是進(jìn)行液壓傳動系統(tǒng)分析的基礎(chǔ),而且還可以對多種流體技術(shù)問題進(jìn)行研究和計(jì)算。 在應(yīng)用伯努利方程時(shí),應(yīng)注意高度 h和壓力 p是通流截面上同一點(diǎn)的兩個(gè)參數(shù)。 37 四、動量方程 剛體力學(xué)動量定律指出,作用在物體上的外力等于物體在力作用方向上單位時(shí)間內(nèi)動量的變化量,即 對于作定常流動的液體,若忽略其可壓縮性,可將m=??V= ?q?t代入上式,并考慮以平均流速代替實(shí)際流速會產(chǎn)生誤差,因而引入動量修正系數(shù) ?,則可寫出如下形式的動量方程為 式中 ?F —— 作用在液體上所有外力的矢量和( N); ? ?2—— 液流在前、后兩個(gè)通流截面上的平均流速矢量( m/s);
點(diǎn)擊復(fù)制文檔內(nèi)容
醫(yī)療健康相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1