freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

正余弦定理高考真題(編輯修改稿)

2025-05-14 04:29 本頁(yè)面
 

【文章內(nèi)容簡(jiǎn)介】 定理得則S1=GMGAsina=,同理可求得S2=(2) y===72(3+cot2a),因?yàn)?,所以?dāng)a=或a=時(shí),y取得最大值ymax=240當(dāng)a=時(shí),y取得最小值ymin=2161(06全國(guó)卷I)的三個(gè)內(nèi)角為,求當(dāng)A為何值時(shí), 取得最大值,并求出這個(gè)最大值。.解: 由A+B+C=π, 得 = - , 所以有cos =sin .cosA+2cos =cosA+2sin =1-2sin2 + 2sin =-2(sin - )2+ 當(dāng)sin = , 即A=時(shí), cosA+2cos取得最大值為1(06全國(guó)II)在,求(1)(2)若點(diǎn)解:(1)由 由正弦定理知(2), 由余弦定理知1(06四川卷)已知是三角形三內(nèi)角,向量,且(Ⅰ)求角;(Ⅱ)若,求解:本小題主要考察三角函數(shù)概念、同角三角函數(shù)的關(guān)系、兩角和與差的三角函數(shù)的公式以及倍角公式,考察應(yīng)用、分析和計(jì)算能力。(Ⅰ)∵ ∴ 即, ∵ ∴ ∴(Ⅱ)由題知,整理得∴ ∴∴或而使,舍去 ∴∴1(06天津卷)如圖,在中,,.(1)求的值;(2)求的值. 本小題考查同角三角函數(shù)關(guān)系、兩角和公式、倍角公式、正弦定理、余弦定理等基礎(chǔ)知識(shí),考察基本運(yùn)算能力及分析解  .(Ⅰ)解: 由余弦定理, 那么,(Ⅱ)解:由,且得由正弦定理,解得。所以。由倍角公式,且,故. (07重慶理5)在中,則BC =( )A. B. D.【答案】:A【分析】:由正弦定理得: 2(07北京文12理11)在中,若,,則 解析:在中,若,∴ A 為銳角,,則根據(jù)正弦定理=。.2(07湖南理12)在中,角所對(duì)的邊分別為,若,b=,則 .【答案】【解析】由正弦定理得,所以2(07湖南文12) 在中,角A、B、C所對(duì)的邊分別為,若,則A=     .【解析】由正弦定理得,所以A=2(07重慶文13)在△ABC中,AB=1,BC=2,B=60176。,則AC= ?!敬鸢浮浚骸痉治觥?
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1