【摘要】高一數(shù)學正弦定理綜合練習題1.在△ABC中,∠A=45°,∠B=60°,a=2,則b等于( )A. B.C.D.22.在△ABC中,已知a=8,B=60°,C=75°,則b等于( )A.4B.4C.4
2025-07-24 11:22
【摘要】教學基本信息課題余弦定理是否屬于地方課程或校本課程否學科數(shù)學學段:高中年級高一相關領域平面向量教材書名:普通高中課程標準實驗教科書B版必修5,出版社:人民教育出版社出版日期:2014年6月指導思想與理論依據(jù)數(shù)學學習按知識分類有概念學習、規(guī)則學習和問題解決學習,相應的課堂教學有概念教學、規(guī)則教學和問題解決學習。數(shù)
2025-04-16 22:52
【摘要】《余弦定理》說課稿南海藝術高級中學胡輝一.教材分析1.地位及作用“余弦定理”是人教A版數(shù)學必修5主要內(nèi)容之一,是解決有關斜三角形問題的兩個重要定理之一,也是初中“勾股定理”內(nèi)容的直接延拓,它是三角函數(shù)一般知識和平面向量知識在三角形中的具體運用,是解可轉化為三角形計算問題的其它數(shù)學問題及生產(chǎn)、生活實際問題的重要工具具有廣泛的應用價值,起到承上啟下的作用。2.課時安排
2025-04-16 22:53
【摘要】課題:正弦定理、余弦定理綜合運用(二)?課題:正弦定理、余弦定理綜合運用(二)知識目標:1、三角形形狀的判斷依據(jù);?2、利用正弦、余弦定理進行邊角互換。能力目標:1、進一步熟悉正、余弦定理;2、
2025-10-31 12:40
【摘要】正余弦定理與三角形形狀的判斷一、掌握基本原理常用的定理或公式主要有以下幾個:(1)在△ABC中,A+B+C=π,,,,sin(A+B/2)=cos(C/2),.(2)正余弦定理及其變式:如a=2RsinA,b2+c2-a2=2bccosA,這里,R為三角形外接圓的半徑
2025-08-05 08:04
【摘要】《正弦定理和余弦定理》典型例題透析類型一:正弦定理的應用:例1.已知在中,,,,解三角形.思路點撥:先將已知條件表示在示意圖形上(如圖),可以確定先用正弦定理求出邊,然后用三角形內(nèi)角和求出角,最后用正弦定理求出邊.解析:,∴,∴,又,∴.總結升華:1.正弦定理可以用于解決已知兩角和一邊求另兩邊和一角的問題;2.數(shù)形結合將已知條件表示在示
2025-03-25 04:59
【摘要】個性化教案教師姓名學生姓名填寫時間學科數(shù)學年級上課時
2025-04-17 04:23
【摘要】例1、如圖,,兩地之間隔著一個水塘,現(xiàn)選擇另一個點,測得,求,兩地之間的距離(精確到1)。ABC182,126,63oCAmCBmACB????ABm(見教材第14頁例2)ABCA
2024-11-30 12:35
【摘要】§ 正弦定理、余弦定理應用舉例在三角形的6個元素中要已知三個(除三角外)才能求解,常見類型及其解法如表所示.已知條件應用定理一般解法一邊和兩角(如a,B,C)正弦定理由A+B+C=180°,求角A;由正弦定理求出b與c.在有解時只有一解兩邊和夾角(如a,b,C)余弦定理正弦定理由余弦定理求第三邊c
2025-06-28 04:30
【摘要】預習學案課堂講義課后練習工具第一章解三角形欄目導引1.余弦定理預習學案課堂講義課后練習工具第一章解三角形欄目導引預習學案課堂講義課后練習工具第一章解三角形欄目導引1.了解向量法證明余弦定理的推導
2025-08-04 07:26
【摘要】高中數(shù)學必修5在三角形中,已知兩角及一邊,或已知兩邊及其中一邊的對角,可以利用正弦定理求其他的邊和角,那么,已知兩邊及其夾角,怎么求出此角的對邊呢?已知三邊,又怎么求出它的三個角呢?導入:余弦定理是什么?怎樣證明?集體探究學習活動一:RTX討論一:在正弦定理的向量證法中,我們是如何將一個向量數(shù)
2025-01-19 09:02
【摘要】應用舉例解決有關測量距離的問題1、正弦定理:2、余弦定理:二、應用:一、定理內(nèi)容:求三角形中的某些元素解三角形實例講解分析:在本題中直接給出了數(shù)學模型(三角形),要求A、B間距離,相當于在三角形中求某一邊長?想一想例1、如下圖,設A、B兩點在河的兩岸,要測量兩點之間的距離
2025-11-01 22:29
【摘要】余弦定理教學設計一、教學內(nèi)容分析人教版《普通高中課程標準實驗教科書·必修(五)》(第2版)第一章《解三角形》第一單元第二課《余弦定理》。二、學生學習情況分析本課之前,學生已經(jīng)學習了三角函數(shù)、向量基本知識和正弦定理有關內(nèi)容,對于三角形中的邊角關系有了較進一步的認識。在此基礎上利用向量方法探求余弦定理,學生已有一定的學習基礎和學習興趣??傮w上學生應用數(shù)學知識的意識不強,
2025-06-19 02:10
【摘要】第一篇:2014屆高考數(shù)學: 一、選擇題 1.在△ABC中,若2cosBsinA=sinC,則△ABC一定是() A.等腰直角三角形 B.等腰三角形 C.直角三角形 D.等邊三角形 解析...
2025-09-22 14:14
【摘要】1.判斷三角形的形狀特征必須從研究三角形的邊與邊的關系,或角的關系入手,充分利用正弦定理與余弦定理進行轉化,即化邊為角或化角為邊,邊角統(tǒng)一.三角形形狀的判斷依據(jù):(1)等腰三角形:a=b或A=B;(2)直角三角形:b2+c2=a2或A=90°;
2025-08-05 08:41