【總結】平面向量與三角函數(shù)1、選擇題:1.已知平行四邊形ABCD,O是平行四邊形ABCD所在平面內任意一點,,,,則向量等于()A.++B.+-C.-+D.--2.已知向量與的夾角為,則等于() (A)5 (B)4
2025-03-25 01:23
【總結】平面向量復習講義一.向量有關概念:1.向量的概念:既有大小又有方向的量,注意向量和數(shù)量的區(qū)別。向量常用有向線段來表示,注意不能說向量就是有向線段,為什么?(向量可以平移)。2.零向量:長度為0的向量叫零向量,記作:,注意零向量的方向是任意的;3.單位向量:長度為一個單位長度的向量叫做單位向量(與共線的單位向量是);4.相等向量:長度相等且方向相同的兩個向量叫相等向量,相等
2025-04-17 01:00
【總結】第一節(jié)平面向量的概念及其線性運算1.向量的有關概念(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模.(2)零向量:長度為0的向量,其方向是任意的.(3)單位向量:長度等于1個單位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共線向量,規(guī)定:0與任一向量共線.(5)相等向量:長度相等且方向相同的向量.(6)相反向量:長度相等且方向相反的向量.
2025-04-16 23:06
【總結】平面向量基礎題一、高考真題體驗1.(2015新課標卷I)已知點,向量,則向量()(A)(B)(C)(D)2.(2015新課標卷II)已知,,則()A.B.C.D.3.(2014新課標卷I)設分別為的三邊的中點,則A.B.C.D.二、知識清單訓練【平
2025-03-25 01:22
【總結】平面向量經典例題:1.已知向量a=(1,2),b=(2,0),若向量λa+b與向量c=(1,-2)共線,則實數(shù)λ等于( )A.-2 B.-C.-1 D.-[答案] C[解析] λa+b=(λ,2λ)+(2,0)=(2+λ,2λ),∵λa+b與c共線,∴-2(2+λ)-2λ=0,∴λ=-1.2.(文)已知向量a=(,1),b=(0,1),c=(k
【總結】平面向量寶雞石油中學萬小進評價優(yōu)良達標待達標等次本試題分為第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,考試結束后,只將第Ⅱ卷和答題卡一并交回。參考公式:將點按向量平移后得點,則第Ⅰ卷(選擇題部分共40分)注意事項:1.答第Ⅰ卷時,考生務必將姓名、準考號、考試科目用鉛
2025-08-01 20:39
【總結】平面向量專題復習考點一、平面向量的概念,線性表示及共線定理題型一、平面向量的概念1.給出下列命題:①若|a|=|b|,則a=b;②若A,B,C,D是不共線的四點,則=是四邊形ABCD為平行四邊形的充要條件;③若a=b,b=c,則a=c;④a=b的充要條件是|a|=|b|且a∥b;⑤若a∥b,b∥c,則a∥( )A.②③ B.①②C.③④D.④⑤2.設a
2025-04-17 02:37
【總結】高一數(shù)學班講義1平面向量一、向量的有關概念:既有大小又有方向的量叫做向量.向量的大小叫
2025-01-10 04:39
【總結】中考數(shù)學平面向量 初中數(shù)學知識點:平面向量 向量的定義: 既有方向又有大小的量叫做向量。 向量的表示: 具有方向的線段叫做有向線段,以A為起點,B為終點的有向線段記作...
2024-12-06 03:06
【總結】平面向量的概念及線性運算A組 專項基礎訓練一、選擇題(每小題5分,共20分)1.給出下列命題:①兩個具有公共終點的向量,一定是共線向量;②兩個向量不能比較大小,但它們的模能比較大小;③λa=0(λ為實數(shù)),則λ必為零;④λ,μ為實數(shù),若λa=μb,則a與b共線.其中錯誤命題的個數(shù)為 ( )A.1 B.2 C.3 D.4
【總結】第二章平面向量向量的概念及表示【學習目標】,理解平面向量的概念和向量的幾何表示;掌握向量的模、零向量、單位向量、平行向量、相等向量、共線向量的概念;并會區(qū)分平行向量、相等向量和共線向量;,使學生初步認識現(xiàn)實生活中的向量和數(shù)量的本質區(qū)別;,培養(yǎng)學生認識客觀事物的數(shù)學本質的能力?!緦W習重難點】重點:平行向量的概念和向量的幾何表示;難點:區(qū)分平行向量、相等向
2025-04-17 01:18
【總結】4.平面向量的基本定理、平面向量的坐標表示及平面向量的坐標運算.5.平面向量的數(shù)量積及向量的應用.1.向量的概念,向量的幾何表示,共線向量的概念.2.向量的加法、減法法則.3.實數(shù)與向量的積、兩個向量共線的充要條件.3.掌握平面向量的數(shù)量積及其幾何意義,能用平面向量的數(shù)量積處理有關長度、角度和垂直的
2025-05-19 17:09
【總結】平面向量的實際背景及基本概念平面向量的線性運算——教材解讀山東劉乃東一、要點精講1.向量的有關概念(1)向量:既有大小又有方向的量叫向量,一般用,,,…來表示,或用有向線段的起點與終點的大寫字母表示,如。向量的大小,即向量的模(長度),記作。注:向量與數(shù)量不同,數(shù)量之間可以比較大小,而兩個向量不能比較大小。(2)零向量:長度為零的向量
2025-08-21 16:13
【總結】精品資源必修《向量》復習一、選擇題1、設,,且∥,則銳角為()A、B、C、D、2、已知,,,則與的夾角是()A、150B、120C、60D、303、下列命題正確的個數(shù)是()①;②;③;④A、1
【總結】第五章平面向量一平面向量的概念及基本運算【考點闡述】向量.向量的加法與減法.實數(shù)與向量的積.平面向量的坐標表示.【考試要求】(1)理解向量的概念,掌握向量的幾何表示,了解共線向量的概念.(2)掌握向量的加法和減法.(3)掌握實數(shù)與向量的積,理解兩個向量共線的充要條件.21世紀教育網(wǎng)(4),掌握平面向量的坐標運算.【考題分類】(一)選擇題(共2題)
2025-06-07 23:44