freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高中數(shù)學(xué)解析幾何知識(shí)點(diǎn)總結(jié)(編輯修改稿)

2025-05-01 05:15 本頁(yè)面
 

【文章內(nèi)容簡(jiǎn)介】 系: 設(shè)圓圓:; 直線:; 圓心到直線的距離.①時(shí),與相切;附:若兩圓相切,則相減為公切線方程.②時(shí),與相交;附:公共弦方程:設(shè)有兩個(gè)交點(diǎn),則其公共弦方程為.③時(shí),與相離. 附:若兩圓相離,則相減為圓心的連線的中與線方程. 由代數(shù)特征判斷:方程組用代入法,得關(guān)于(或)的一元二次方程,其判別式為,則:與相切;與相交;與相離.注:若兩圓為同心圓則,相減,不表示直線.6. 圓的切線方程:圓的斜率為的切線方程是過(guò)圓上一點(diǎn)的切線方程為:.①一般方程若點(diǎn)(x0 ,y0)在圓上,則(x – a)(x0 – a)+(y – b)(y0 – b)=R2. 特別地,過(guò)圓上一點(diǎn)的切線方程為.②若點(diǎn)(x0 ,y0)不在圓上,圓心為(a,b)則,聯(lián)立求出切線方程.7. 求切點(diǎn)弦方程:方法是構(gòu)造圖,則切點(diǎn)弦方程即轉(zhuǎn)化為公共弦方程. 如圖:ABCD四類共圓. 已知的方程…① 又以ABCD為圓為方程為…② …③,所以BC的方程即③代②,①②相切即為所求.三、曲線和方程:在直角坐標(biāo)系中,如果曲線C和方程f(x,y)=0的實(shí)數(shù)解建立了如下的關(guān)系:1) 曲線C上的點(diǎn)的坐標(biāo)都是方程f(x,y)=0的解(純粹性);2) 方程f(x,y)=0的解為坐標(biāo)的點(diǎn)都在曲線C上(完備性)。則稱方程f(x,y)=0為曲線C的方程,曲線C叫做方程f(x,y)=0的曲線。:.1)直接法:建系設(shè)點(diǎn),列式表標(biāo),簡(jiǎn)化檢驗(yàn)。 2)參數(shù)法。 3)定義法, 4)待定系數(shù)法. 圓錐曲線方程考試內(nèi)容:數(shù)學(xué)探索169。.橢圓的簡(jiǎn)單幾何性質(zhì).橢圓的參數(shù)方程.?dāng)?shù)學(xué)探索169。.雙曲線的簡(jiǎn)單幾何性質(zhì).?dāng)?shù)學(xué)探索169。.拋物線的簡(jiǎn)單幾何性質(zhì).?dāng)?shù)學(xué)探索169。:數(shù)學(xué)探索169。(1)掌握橢圓的定義、標(biāo)準(zhǔn)方程和橢圓的簡(jiǎn)單幾何性質(zhì),了解橢圓的參數(shù)方程.?dāng)?shù)學(xué)探索169。(2)掌握雙曲線的定義、標(biāo)準(zhǔn)方程和雙曲線的簡(jiǎn)單幾何性質(zhì).?dāng)?shù)學(xué)探索169。(3)掌握拋物線的定義、標(biāo)準(zhǔn)方程和拋物線的簡(jiǎn)單幾何性質(zhì).?dāng)?shù)學(xué)探索169。(4)了解圓錐曲線的初步應(yīng)用. 167。08. 圓錐曲線方程 知識(shí)要點(diǎn)一、橢圓方程.1. 橢圓方程的第一定義:⑴①橢圓的標(biāo)準(zhǔn)方程:i. 中心在原點(diǎn),焦點(diǎn)在x軸上:. ii. 中心在原點(diǎn),焦點(diǎn)在軸上:. ②一般方程:.③橢圓的標(biāo)準(zhǔn)參數(shù)方程:的參數(shù)方程為(一象限應(yīng)是屬于).⑵①頂點(diǎn):或.②軸:對(duì)稱軸:x軸,軸;長(zhǎng)軸長(zhǎng),短軸長(zhǎng).③焦點(diǎn)
點(diǎn)擊復(fù)制文檔內(nèi)容
數(shù)學(xué)相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1