【總結(jié)】立體幾何??甲C明題1、已知四邊形是空間四邊形,分別是邊的中點(diǎn)(1)求證:EFGH是平行四邊形(2)若BD=,AC=2,EG=2。求異面直線AC、BD所成的角和EG、BD所成的角。AHGFEDCB2、如圖,已知空間四邊形中,,是的中點(diǎn)。求證:(1)平面CDE;AEDBC(2)平面平面。
2025-04-04 05:15
【總結(jié)】高中數(shù)學(xué)立體幾何知識(shí)點(diǎn)總結(jié) 數(shù)學(xué)立體幾何知識(shí)點(diǎn) :掌握三個(gè)公理及推論,會(huì)說明共點(diǎn)、共線、共面問題。 能夠用斜二測法作圖。 ?。浩叫?、相交、異面的概念; 會(huì)求異面直線所成...
2024-12-05 02:12
【總結(jié)】上海立體幾何高考試題匯總(01春)若有平面與,且,則下列命題中的假命題為()(A)過點(diǎn)且垂直于的直線平行于.(B)過點(diǎn)且垂直于的平面垂直于.(C)過點(diǎn)且垂直于的直線在內(nèi).(D)過點(diǎn)且垂直于的直線在內(nèi).(01)已知a、b為兩條不同的直線,α、β為兩個(gè)不同的平面,且a⊥α,b⊥β,則下列命題中的假命題是(?
2025-04-04 05:14
【總結(jié)】立體幾何重要定理:1)直線與平面垂直的判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這兩條直線垂直于這個(gè)平面.2)直線和平面平行性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行.3)平面平行判定定理:如果一個(gè)平面內(nèi)有兩條
2024-12-17 02:37
【總結(jié)】向量法解立體幾何1、直線的方向向量和平面的法向量⑴.直線的方向向量:若A、B是直線上的任意兩點(diǎn),則為直線的一個(gè)方向向量;與平行的任意非零向量也是直線的方向向量.⑵.平面的法向量:若向量所在直線垂直于平面,則稱這個(gè)向量垂直于平面,記作,如果,那么向量叫做平面的法向量.⑶.平面的法向量的求法(待定系數(shù)法):①建立適當(dāng)?shù)淖鴺?biāo)系.②設(shè)平面的法向量為.③求出平面內(nèi)兩
2025-04-04 05:16
【總結(jié)】高中數(shù)學(xué)之立體幾何平面的基本性質(zhì)公理1如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線上所有的點(diǎn)都在這個(gè)平面內(nèi).公理2如果兩個(gè)平面有一個(gè)公共點(diǎn),那么它們有且只有一條通過這個(gè)點(diǎn)的公共直線.公理3經(jīng)過不在同一直線上的三個(gè)點(diǎn),有且只有一個(gè)平面.根據(jù)上面的公理,可得以下推論.推論1經(jīng)過一條直線和這條直線外一點(diǎn),有且只有一個(gè)平面.推論2經(jīng)過兩條相交直線,有
2025-08-08 19:31
【總結(jié)】高中數(shù)學(xué)立體幾何知識(shí)點(diǎn)歸納總結(jié)一、立體幾何知識(shí)點(diǎn)歸納第一章空間幾何體(一)空間幾何體的結(jié)構(gòu)特征(1)多面體——由若干個(gè)平面多邊形圍成的幾何體.圍成多面體的各個(gè)多邊形叫叫做多面體的面,相鄰兩個(gè)面的公共邊叫做多面體的棱,棱與棱的公共點(diǎn)叫做頂點(diǎn)。旋轉(zhuǎn)體——把一個(gè)平面圖形繞它所在平面內(nèi)的一條定直線旋轉(zhuǎn)形成的封閉幾何體。其中,這條定直線稱為旋轉(zhuǎn)體的軸。
【總結(jié)】立體幾何知識(shí)點(diǎn)整理一.直線和平面的三種位置關(guān)系:1.線面平行 2.線面相交 3.線在面內(nèi)二.平行關(guān)系:1.線線平行:方法一:用線面平行實(shí)現(xiàn)。方法二:用面面平行實(shí)現(xiàn)。方法三:用線面垂直實(shí)現(xiàn)。若,則。方法四:用向量方法:若向量和向量共線且l、m不重合,則。2.線面平行:方法一:
2025-04-04 05:05
【總結(jié)】新課標(biāo)立體幾何解析幾何常考題匯總1、已知四邊形是空間四邊形,分別是邊的中點(diǎn)(1)求證:EFGH是平行四邊形AHGFEDCB(2)若BD=,AC=2,EG=2。求異面直線AC、BD所成的角和EG、BD所成的角。證明:在中,∵分別是的中點(diǎn)∴同理,∴∴四邊形是平行四邊形。(2)90°30°
2025-07-23 11:22
【總結(jié)】高中數(shù)學(xué)《立體幾何》大題及答案解析(理)1.(2009全國卷Ⅰ)如圖,四棱錐中,底面為矩形,底面,,,點(diǎn)在側(cè)棱上,。(I)證明:是側(cè)棱的中點(diǎn);求二面角的大小。2.(2009全國卷Ⅱ)如圖,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分別為AA1、B1C的中點(diǎn),DE⊥平面BCC1(Ⅰ)證明:AB=AC(Ⅱ)設(shè)二
2025-06-18 13:50
【總結(jié)】立體幾何專題:空間角和距離的計(jì)算一線線角1.直三棱柱A1B1C1-ABC,∠BCA=900,點(diǎn)D1,F(xiàn)1分別是A1B1和A1C1的中點(diǎn),若BC=CA=CC1,求BD1與AF1所成角的余弦值。2.在四棱錐P-ABCD中,底面ABCD是直角梯形,∠BAD=900,AD∥BC,AB=BC=a,AD=2a,且PA⊥面ABCD,PD與底面成300角,(1)若AE⊥PD,E為垂足,求證:B
2025-04-04 04:20
【總結(jié)】高中課程復(fù)習(xí)專題1高中課程復(fù)習(xí)專題——數(shù)學(xué)立體幾何一空間幾何體㈠空間幾何體的類型1多面體:由若干個(gè)平面多邊形圍成的幾何體。圍成多面體的各個(gè)多邊形叫做多面體的面,相鄰兩個(gè)面的公共邊叫做多面體的棱,棱與棱的公共點(diǎn)叫做多面體的頂點(diǎn)。2旋轉(zhuǎn)體:把一個(gè)平面圖形繞它所在的平面內(nèi)的一條定直線旋轉(zhuǎn)形成了封閉幾何體。其中,這條直線稱為旋轉(zhuǎn)
2024-12-17 02:36
【總結(jié)】第1章立體幾何初步(A)(時(shí)間:120分鐘滿分:160分)一、填空題(本大題共14小題,每小題5分,共70分)1.將一個(gè)等腰梯形繞它的較長的底邊所在的直線旋轉(zhuǎn)一周,所得的幾何體包括________________.2.一個(gè)三角形在其直觀圖中對應(yīng)一個(gè)邊長為1的正三角形,原三角形的面積為________.
2024-12-05 00:28
【總結(jié)】第1章立體幾何初步(B)(時(shí)間:120分鐘滿分:160分)一、填空題(本大題共14小題,每小題5分,共70分)1.等邊三角形的邊長為a,它繞其一邊所在的直線旋轉(zhuǎn)一周,則所得旋轉(zhuǎn)體的體積為________.2.若棱長為3的正方體的頂點(diǎn)都在同一球面上,則該球的表面積為________.3.如圖,是一個(gè)正方體的展
【總結(jié)】高中數(shù)學(xué)(人教版)必修二《立體幾何》綜合提升卷 一.選擇題(共13小題,滿分65分,每小題5分)1.(5分)設(shè)三棱柱ABC﹣A1B1C1的側(cè)棱與底面垂直,∠BCA=90°,BC=CA=2,若該棱柱的所有頂點(diǎn)都在體積為的球面上,則直線B1C與直線AC1所成角的余弦值為( ?。〢. B. C. D.2.(5分)設(shè)l、m、n表示不同的直線,α、β、γ表示不同的平面,給
2025-04-04 05:06