freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

人教版九年級數(shù)學上冊知識點總結(編輯修改稿)

2025-05-01 03:11 本頁面
 

【文章內容簡介】 ,對應線段相等,對應角相等。(3)圖形的大小和形狀都沒有發(fā)生改變,只改變了圖形的位置。知識點三 利用旋轉性質作圖旋轉有兩條重要性質:(1)任意一對對應點與旋轉中心所連線段的夾角等于旋轉角;(2)對應點到旋轉中心的距離相等,它是利用旋轉的性質作圖的關鍵。步驟可分為:① 連:即連接圖形中每一個關鍵點與旋轉中心;② 轉:即把直線按要求繞旋轉中心轉過一定角度(作旋轉角)③ 截:即在角的另一邊上截取關鍵點到旋轉中心的距離,得到各點的對應點;④ 接:即連接到所連接的各點。 中心對稱知識點一 中心對稱的定義中心對稱:把一個圖形繞著某一個點旋轉180176。,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這個點對稱或中心對稱,這個點叫做對稱中心。注意以下幾點:中心對稱指的是兩個圖形的位置關系;只有一個對稱中心;繞對稱中心旋轉180176。兩個圖形能夠完全重合。知識點二 作一個圖形關于某點對稱的圖形要作出一個圖形關于某一點的成中心對稱的圖形,關鍵是作出該圖形上關鍵點關于對稱中心的對稱點。最后將對稱點按照原圖形的形狀連接起來,即可得出成中心對稱圖形。知識點三 中心對稱的性質有以下幾點:(1) 關于中心對稱的兩個圖形上的對應點的連線都經過對稱中心,并且都被對稱中心平分;(2) 關于中心對稱的兩個圖形能夠互相重合,是全等形;(3) 關于中心對稱的兩個圖形,對應線段平行(或共線)且相等。知識點四 中心對稱圖形的定義把一個圖形繞著某一個點旋轉180176。,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。知識點五 關于原點對稱的點的坐標在平面直角坐標系中,如果兩個點關于原點對稱,它們的坐標符號相反,即點p(x,y)關于原點對稱點為(x,y)。第二十四章 圓 圓 圓知識點一 圓的定義圓的定義:第一種:在一個平面內,線段OA繞它固定的一個端點O旋轉一周,另一個端點A所形成的圖形叫作圓。固定的端點O叫作圓心,線段OA叫作半徑。第二種:圓心為O,半徑為r的圓可以看成是所有到定點O的距離等于定長r的點的集合。比較圓的兩種定義可知:第一種定義是圓的形成進行描述的,第二種是運用集合的觀點下的定義,但是都說明確定了定點與定長,也就確定了圓。知識點二 圓的相關概念(1) 弦:連接圓上任意兩點的線段叫做弦,經過圓心的弦叫作直徑。(2) ?。簣A上任意兩點間的部分叫做圓弧,簡稱弧。圓的任意一條直徑的兩個端點把圓分成兩條弧,每一條弧都叫做半圓。(3) 等圓:等夠重合的兩個圓叫做等圓。(4) 等?。涸谕瑘A或等圓中,能夠互相重合的弧叫做等弧。弦是線段,弧是曲線,判斷等弧首要的條件是在同圓或等圓中,只有在同圓或等圓中完全重合的弧才是等弧,而不是長度相等的弧。 垂直于弦的直徑知識點一 圓的對稱性 圓是軸對稱圖形,任何一條直徑所在直線都是它的對稱軸。知識點二 垂徑定理C(1)垂徑定理:垂直于弦的直徑平分弦,并且平分弦所對的兩條弧。如圖所示,直徑為CD,AB是弦,且CD⊥AB,MDBA AM=BM 垂足為M AC=BC AD=BD垂徑定理的推論:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧如上圖所示,直徑CD與非直徑弦AB相交于點M, CD⊥ABAM=BM AC=BC AD=BD注意:因為圓的兩條直徑必須互相平分,所以垂徑定理的推論中,被平分的弦必須不是直徑,否則結論不成立。 弧、弦、圓心角知識點 弦、弧、圓心角的關系(1) 弦、弧、圓心角之間的關系定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等。(2) 在同圓或等圓中,如果兩個圓心角,兩條弧,兩條弦中有一組量相等,那么它們所對應的其余的各組量也相等。(3) 注意不能忽略同圓或等圓這個前提條件,如果丟掉這個條件,即使圓心角相等,所對的弧、弦也不一定相等,比如兩個同心圓中,兩個圓心角相同,但此時弧、弦不一定相等。 圓周角知識點一 圓周角定理 (1) 圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半。(2) 圓周角定理的推論:半圓
點擊復制文檔內容
數(shù)學相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1