【總結(jié)】第三章橢圓形方程的有限差分法兩點邊值問題的差分格式二階橢圓型方程的差分格式
2025-06-19 20:14
【總結(jié)】偏微分方程PARTIALDIFFIERENTIALEQUATION()浙江大學數(shù)學系2參考書目《數(shù)學物理方程》,王明新,清華大學出版社。《數(shù)學物理方程》,姜禮尚,高教出版社?!豆こ碳夹g(shù)中的偏微分方程
2025-07-18 09:16
【總結(jié)】I摘要圖像復(fù)原領(lǐng)域中的數(shù)字圖像修復(fù)技術(shù)是近幾年來比較熱門的一個研究課題,它利用圖像中已知的有效信息,按照一定規(guī)則對破損的圖像進行信息填充,得到連續(xù)、完整、自然的圖像視覺效果。該技術(shù)廣泛應(yīng)用于文物保護、老照片的修復(fù)、圖像中文本信息的去除以及障礙物的去除、影視特技制作以及圖像壓縮、增強等方面,具有很高的實用價值。本文所做的工作主要體現(xiàn)在以下幾個方面:(1)在閱讀和查找
2025-01-18 16:22
【總結(jié)】基于MATLAB的偏微分方程差分解法學院:核工程與地球物理學院專業(yè):勘查技術(shù)與工程班級:1120203學號:姓名:2014/6/11在科學技術(shù)各領(lǐng)域中,有很多問題都可以歸結(jié)為偏微分方程問題。在物理專業(yè)的力學、熱學、電學、光學、近代物理課程中都可遇見偏微分方程。偏微分方程,再加上邊界條件、初始條件構(gòu)成的數(shù)學
2025-06-27 18:19
【總結(jié)】求解偏微分方程的邊值問題本實驗學習使用MATLAB的圖形用戶命令pdetool來求解偏微分方程的邊值問題。這個工具是用有限元方法來求解的,而且采用三角元。我們用內(nèi)個例題來說明它的用法。一、MATLAB支持的偏微分方程類型考慮平面有界區(qū)域D上的二階橢圓型PDE邊值問題: 其中未知函數(shù)為。它的邊界條件分為三類:(1)Direchlet條件: (2)Ne
2025-06-19 20:50
【總結(jié)】第十章衍生產(chǎn)品的定價--------偏微分方程(PDE)第一節(jié)無風險組合與偏微分方程第二節(jié)衍生產(chǎn)品期權(quán)的定價第一節(jié)無風險組合與偏微分方程一、無風險組合衍生產(chǎn)品是以其它證券為基礎(chǔ)簽訂的合同,此合同有一定的期限,用T來表示到期日,則衍生工具的價格只
2025-08-11 15:20
【總結(jié)】這一部分里,我們將看到以下內(nèi)容?幾個典型物理問題及其數(shù)學描述(微分方程和定解條件)?微分方程的類型?微分方程的邊界條件?微分方程及其邊界條件的等效積分原理幾個典型的問題?弦振動問題的微分方程及定解條件?傳熱問題的微分方程及定解條件?位勢方程及定解條件弦是一種抽象模型,工程實際中,可以模擬繩鎖、
2025-05-15 04:17
【總結(jié)】Chapter2IntroductiontoPartialDifferentialEquations偏微分方程式(PDE)就是指含有偏導(dǎo)函數(shù)(partialderivatives)的方程式,在常微分方程式(ODE)中,未知函數(shù)只是單變數(shù)函數(shù),而在PDE中,未知函數(shù)則為多變數(shù)函數(shù)。在實際的工程或物理問題中,所欲分析的物理量(即未知函數(shù))常受到不只一個變數(shù)的影響,所以一般多以
2025-05-16 00:51
【總結(jié)】《MATLAB語言》課程論文基于MATLAB語言求偏微分方程姓名:馬蘭學號:12010245365專業(yè):通信工程班級:2010
2025-06-18 14:48
【總結(jié)】微分方程 什么是微分方程?它是怎樣產(chǎn)生的?這是首先要回答的問題. 300多年前,由牛頓(Newton,1642-1727)和萊布尼茲(Leibniz,1646-1716)所創(chuàng)立的微積分學,是人類科學史上劃時代的重大發(fā)現(xiàn),而微積分的產(chǎn)生和發(fā)展,,,運動規(guī)律很難全靠實驗觀測認識清楚,,運動物體(變量)與它的瞬時變化率(導(dǎo)數(shù))之間,通常在運動過程中按照某種己知定律存在著聯(lián)系,我們?nèi)?/span>
2025-06-24 23:00
【總結(jié)】微分方程數(shù)值解課程設(shè)計報告班級:______________姓名:_________學號:___________成績:2017年6月21日目錄一、摘要 1二、常微分方程數(shù)值解 24階Runge-Kutta法
2025-04-16 23:19
【總結(jié)】本科生實驗報告實驗課程微分方程數(shù)值解學院名稱管理科學學院專業(yè)名稱信息與計算科學學生姓名學生學號指導(dǎo)教師林紅霞實驗地點6C402實驗成績二〇一五年十月二〇一五年十一月填寫說明1、適用于本科生所有的實驗報告(印制實驗報告冊除外);2、專業(yè)填寫為專業(yè)全
2025-06-23 00:43
【總結(jié)】微分方程例題選解1.求解微分方程。解:原方程化為,通解為由,,得,所求特解為。2.求解微分方程。解:令,,原方程化為,分離變量得,積分得,原方程的通解為。3.求解微分方程。解:此題為全微分方程。下面利用“湊微分”的方法求解。原方程化為,由,得,
2025-07-24 09:11
【總結(jié)】微分方程的近似解法差分解法對三類典型偏微分方程的定解問題,差分解法的基本思想是用函數(shù)的差商代替微商,從而把微分運算化成代數(shù)運算,求解出在定解區(qū)域中足夠多的點上的近似值。1、差分與差分方程n函數(shù)f(x)的導(dǎo)數(shù)是函數(shù)的增量與自變量增量的比值當自變量增量趨于零的極限。n即:一階差商高階差商由差商代替微商的誤差偏導(dǎo)數(shù)的差商表示差分方程
2025-08-05 07:11
【總結(jié)】第四次:常微分方程數(shù)值解一:引言:1:微分方程在數(shù)模中有重要作用。2:列出微分方程僅是第一步,求解微方程為第二步。3:但僅有少數(shù)微分方程可解析解,大部分非線性方程,變系數(shù)方程,均所謂“解不出來”)1()()(()()]()[()(:1____])
2025-08-20 11:53