【總結(jié)】含參數(shù)一元一次不等式(組)的解法1、若關(guān)于x的不等式,可化為,則a的取值范圍是多少?2、關(guān)于x的方程的解為正實(shí)數(shù),則k的取值范圍是?3、關(guān)于x的方程x+2m-3=3x+7的解為不大于2的非負(fù)數(shù),則m的整數(shù)值是多少?4、關(guān)于x的不等式2x-a≤-1的解集如圖所示,則a的取值是多少?
2025-06-25 17:04
【總結(jié)】高中數(shù)學(xué)不等式的恒成立問題?一、用一元二次方程根的判別式????有關(guān)含有參數(shù)的一元二次不等式問題,若能把不等式轉(zhuǎn)化成二次函數(shù)或二次方程,通過根的判別式或數(shù)形結(jié)合思想,可使問題得到順利解決?;窘Y(jié)論總結(jié)例1??對(duì)于x∈R,不等式恒成立,求實(shí)數(shù)m的取值范圍。?例
2025-03-26 05:41
【總結(jié)】......含參不等式恒成立問題的求解策略“含參不等式恒成立問題”把不等式、函數(shù)、三角、幾何等內(nèi)容有機(jī)地結(jié)合起來,其以覆蓋知識(shí)點(diǎn)多,綜合性強(qiáng),解法靈活等特點(diǎn)而倍受高考、競賽命題者的青睞。另一方面,在解決這類問題的過程中涉及的“函數(shù)與方程”、“化歸與轉(zhuǎn)化”、“數(shù)形結(jié)合”、“分類討論”等數(shù)學(xué)思想對(duì)鍛煉學(xué)生的綜合解題能力,培養(yǎng)其思維的靈活性、創(chuàng)
2025-03-24 23:42
【總結(jié)】含參不等式專題(淮陽中學(xué))編寫:孫宜俊當(dāng)在一個(gè)不等式中含有了字母,則稱這一不等式為含參數(shù)的不等式,那么此時(shí)的參數(shù)可以從以下兩個(gè)方面來影響不等式的求解,首先是對(duì)不等式的類型(即是那一種不等式)的影響,其次是字母對(duì)這個(gè)不等式的解的大小的影響。我們必須通過分類討論才可解決上述兩個(gè)問題,同時(shí)還要注意是參數(shù)的選取確定了不等式
2024-08-04 06:19
【總結(jié)】一元二次不等式的解法教學(xué)設(shè)計(jì)方案教學(xué)目標(biāo)(1)掌握一元二次不等式的解法;(2)知道一元二次不等式可以轉(zhuǎn)化為一元一次不等式組;(3)了解簡單的分式不等式的解法;(4)能利用二次函數(shù)與一元二次方程來求解一元二次不等式,理解它們?nèi)咧g的內(nèi)在聯(lián)系;(5)能夠進(jìn)行較簡單的分類討論,借助于數(shù)軸的直觀,求解簡單的含字母的一元二次不等式;(6)通過利用二次函數(shù)的圖象來求解一元二次
2025-04-16 12:45
【總結(jié)】 《一元二次不等式的解法》說課稿 : 。 概括地講,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,...
2024-12-03 00:43
【總結(jié)】基礎(chǔ)梳理1.一元二次不等式的解法(1)將不等式的右邊化為零,左邊化為二次項(xiàng)系數(shù)大于零的不等式ax2+bx+c>0(a>0)或ax2+bx+c<0(a>0).(2)求出相應(yīng)的一元二次方程的根.(3)利用二次函數(shù)的圖象與x軸的交點(diǎn)確定一元二次不等式的解集.2.一元二次不等式與相應(yīng)的二次函數(shù)及一元二次方程的關(guān)系如下表:判別式Δ=b2-4acΔ>0
2025-03-24 06:23
【總結(jié)】數(shù)學(xué)解題絕招1一、方法引入:1.數(shù)形結(jié)合法:(1)若f(x)=ax+b,x∈[α,β],則:f(x)0恒成立f(x)0恒成立
2024-08-04 12:19
【總結(jié)】一元二次不等式的解法(一)安邊中學(xué)鄒英一次函數(shù)、一元一次方程、一元一次不等式之間的關(guān)系,通過觀察一次函數(shù)的圖像求得一元一次不等式的解集.一、復(fù)習(xí)引入考察:對(duì)一次函數(shù)y=2x-6,當(dāng)x為何值時(shí),y=0,即2x-6=0當(dāng)x為何值時(shí),y0
2024-11-22 02:57
【總結(jié)】24bac???0??0??0??2(0)yaxbxca????的圖象??的根002????acbxax1212,()xxxx?兩相異實(shí)根122bxxa???兩相等實(shí)根無實(shí)根的解集)0(02????acbxax
2024-11-09 22:23
【總結(jié)】一元二次不等式及其解法(1)一、創(chuàng)設(shè)情景,引入新課.問題:某同學(xué)想上網(wǎng)查資料,現(xiàn)有兩家網(wǎng)吧可供選擇。A網(wǎng)吧每小時(shí)收費(fèi)(不足1小時(shí)的按1小時(shí)計(jì)算);B網(wǎng)吧的收費(fèi)原則為,在用戶上網(wǎng)的第1個(gè)小時(shí)內(nèi)(含恰好1個(gè)小時(shí))收費(fèi),第2個(gè)小時(shí)內(nèi)收費(fèi),以后每小時(shí)減少。(每天上網(wǎng)最多17小時(shí))問:設(shè)該同學(xué)上網(wǎng)時(shí)間為x小時(shí)
2024-11-10 05:43
【總結(jié)】......含參數(shù)一元二次不等式練習(xí)題一、選擇題:1.(2011·福建高考)若關(guān)于x的方程x2+mx+1=0有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍是( )A.(-1,1) B.(-2,2)C.(
【總結(jié)】第一篇:(一元二次不等式的概念和一元二次不等式解法) 或 一元二次不等式及其解法 一元二次不等式的概念和一元二次不等式解法 從容說課 ,第一個(gè)學(xué)時(shí)先由師生共同分析日常生活中的實(shí)際問題來...
2024-10-20 19:24
【總結(jié)】課時(shí)作業(yè)16 一元二次不等式及其解法時(shí)間:45分鐘 滿分:100分課堂訓(xùn)練1.不等式x2-5x+6≤0的解集為( )A.[2,3] B.[2,3)C.(2,3) D.(2,3]【答案】 A【解析】 因?yàn)榉匠蘹2-5x+6=0的解為x=2或x=3,所以不等式的解集為{x|2≤x≤3}.2.若a2-a+10,則不等式x2+ax+1>
2025-06-23 20:16
【總結(jié)】山東省墾利第一中學(xué)高三一輪復(fù)習(xí)§一元二次不等式恒成立問題一元二次不等式恒成立問題“含參不等式恒成立問題”是數(shù)學(xué)中常見的問題,在高考中頻頻出現(xiàn),是高考中的一個(gè)難點(diǎn)問題。含參不等式恒成立問題涉及到一次函數(shù)、二次函數(shù)的性質(zhì)和圖像,滲透著換元、化歸、數(shù)形結(jié)合、函數(shù)與方程等思想方法,有利于考查學(xué)生的綜合解題能力,在培養(yǎng)思維的靈活性、創(chuàng)造性等方面起到了積極的作
2025-03-24 05:31