【總結(jié)】幾何定值和極值1.幾何定值問(wèn)題(1)定量問(wèn)題:解決定量問(wèn)題的關(guān)鍵在探求定值,一旦定值被找出,就轉(zhuǎn)化為熟悉的幾何證明題了。探求定值的方法一般有運(yùn)動(dòng)法、特殊值法及計(jì)算法。(2)定形問(wèn)題:定形問(wèn)題是指定直線、定角、定向等問(wèn)題。在直角坐標(biāo)平面上,定點(diǎn)可對(duì)應(yīng)于有序數(shù)對(duì),定向直線可以看作斜率一定的直線,實(shí)質(zhì)上這些問(wèn)題是軌跡問(wèn)題。2.幾何極值問(wèn)題:最常見(jiàn)的
2025-03-24 12:12
【總結(jié)】平面幾何中的幾個(gè)重要定理一.塞瓦定理塞瓦(G。Ceva1647—1743),意大利著名數(shù)學(xué)家。塞瓦定理設(shè)為三邊所在直線外一點(diǎn),連接分別和的邊或三邊的延長(zhǎng)線交于(如圖1),則與塞瓦定理同樣重要的還有下面的定理。塞瓦定理逆定理設(shè)為的邊或三邊的延長(zhǎng)線上的三點(diǎn)(都在三邊上或只有其中之一在邊上),如果有
2024-08-31 20:55
【總結(jié)】平面幾何習(xí)題大全下面的平面幾何習(xí)題均是我兩年來(lái)收集的,屬競(jìng)賽范圍。共分為五種類型,1,幾何計(jì)算;2,幾何證明;3,共點(diǎn)線與共線點(diǎn);4,幾何不等式;5,經(jīng)典幾何。幾何計(jì)算-1命題設(shè)點(diǎn)D是Rt△ABC斜邊AB上的一點(diǎn),DE⊥BC于點(diǎn)E,DF⊥AC于點(diǎn)F。若AF=15,BE=10,則四邊形DECF的面積是多少?解:設(shè)DF=CE=x,DE=CF=y.∵Rt△BED∽R(shí)t△D
2025-03-25 01:21
【總結(jié)】經(jīng)典難題(一)1、已知:如圖,O是半圓的圓心,C、E是圓上的兩點(diǎn),CD⊥AB,EF⊥AB,EG⊥CO.求證:CD=GF.AFGCEBOD2、已知:如圖,P是正方形ABCD內(nèi)一點(diǎn),∠PAD=∠PDA=150.APCDB求證:△PBC是正三角形.D2C2
【總結(jié)】解析幾何中的定點(diǎn)和定值問(wèn)題【教學(xué)目標(biāo)】學(xué)會(huì)合理選擇參數(shù)(坐標(biāo)、斜率等)表示動(dòng)態(tài)圖形中的幾何對(duì)象,探究、證明其不變性質(zhì)(定點(diǎn)、定值等),體會(huì)“設(shè)而不求”、“整體代換”在簡(jiǎn)化運(yùn)算中的作用.【教學(xué)難、重點(diǎn)】解題思路的優(yōu)化.【教學(xué)方法】討論式【教學(xué)過(guò)程】一、基礎(chǔ)練習(xí)1、過(guò)直線上動(dòng)點(diǎn)作圓的切線,則兩切點(diǎn)所在直線恒過(guò)一定點(diǎn).此定點(diǎn)的坐標(biāo)為_(kāi)________.【答案】【解
2025-06-18 18:55
【總結(jié)】一、選擇題1.(重慶市2002年4分)一居民小區(qū)有一正多邊形的活動(dòng)場(chǎng)。為迎接“AAPP”會(huì)議在重慶的召開(kāi),小區(qū)管委會(huì)決定在這個(gè)多邊形的每個(gè)頂點(diǎn)處修建一個(gè)半徑為2m的扇形花臺(tái),花臺(tái)都以多邊形的頂點(diǎn)為圓心,以多邊形的內(nèi)角為圓心角,花臺(tái)占地面積共為12。若每個(gè)花臺(tái)的造價(jià)為400元,則建造這些花臺(tái)共需資金【】A2400元B2800元C3200元
2025-06-25 05:50
【總結(jié)】01凸四邊形ABCD的對(duì)角線交于點(diǎn)M,點(diǎn)P、Q分別是△AMD和△CMB重心,R、S分別是△DMC和△MAB的垂心.求證PQ⊥RS.證:過(guò)A、C分別作BD的平行線,過(guò)B、D分別作AC的平行線.這四條直線分別相交于X、W、Y、Z.則四邊形XWYZ為平行四邊形,且XW∥AC∥XZ.則四邊形XAMD、MBYC皆為平行四邊
【總結(jié)】......高一數(shù)學(xué)競(jìng)賽班二試講義第1講平面幾何中的26個(gè)定理班級(jí)姓名一、知識(shí)點(diǎn)金1.梅涅勞斯定理:若直線不經(jīng)過(guò)的頂點(diǎn),并且與的三邊或它們的延長(zhǎng)線分別
2025-06-19 22:03
【總結(jié)】初中幾何最值問(wèn)題例題精講一、三點(diǎn)共線1、構(gòu)造三角形【例1】在銳角中,AB=4,BC=5,∠ACB=45°,將△ABC繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn),得到△A1BC1.點(diǎn)E為線段AB中點(diǎn),點(diǎn)P是線段AC上的動(dòng)點(diǎn),在△ABC繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)過(guò)程中,點(diǎn)P的對(duì)應(yīng)點(diǎn)是點(diǎn)P1,求線段EP1長(zhǎng)度的最大值與最小值.【鞏固】以平面上一點(diǎn)O為直角頂點(diǎn),
2025-03-24 12:33
【總結(jié)】平面幾何定理公理總結(jié)一、線與角1.兩點(diǎn)之間,線段最短。線段的長(zhǎng)叫兩點(diǎn)間的距離。直線外一點(diǎn)到直線,垂線段最短,垂線段的長(zhǎng)叫該點(diǎn)到直線的距離。一組平行線中,一條直線上一點(diǎn)到另一條直線的距離,叫兩條平行線間的距離。2.經(jīng)過(guò)兩點(diǎn)有且只有一條直線,即兩點(diǎn)確定一條直線。不在同一直線上的三點(diǎn)確定一個(gè)角。3.兩直線相交,對(duì)頂角相等。4.同角(或等角)的余角相等;同角(或
2025-06-17 01:36
【總結(jié)】......平面幾何的17個(gè)著名定理1.若不給自己設(shè)限,則人生中就沒(méi)有限制你發(fā)揮的藩籬。2.若不是心寬似海,哪有人生風(fēng)平浪靜。在紛雜的塵世里,為自己留下一片純靜的心靈空間,
2025-06-19 23:35
【總結(jié)】......橢圓中的最值問(wèn)題與定點(diǎn)、定值問(wèn)題解決與橢圓有關(guān)的最值問(wèn)題的常用方法(1)利用定義轉(zhuǎn)化為幾何問(wèn)題處理;(2)利用數(shù)形結(jié)合,挖掘數(shù)學(xué)表達(dá)式的幾何特征進(jìn)而求解;(3)利用函數(shù)最值得探求方法,將其轉(zhuǎn)化為區(qū)間上的二次函數(shù)
2025-03-25 04:50
【總結(jié)】梅涅勞斯定理托勒密定理引入塞瓦定理課外思考平面幾何──平面幾何的幾個(gè)重要定理平面幾何是培養(yǎng)嚴(yán)密推理能力的很好數(shù)學(xué)分支,且因其證法多種多樣:除了幾何證法外,還有三角函數(shù)法、解析法、復(fù)數(shù)法、向量法等許多證法,這方面的問(wèn)題受到各種競(jìng)賽的青睞,現(xiàn)在每一屆的聯(lián)賽的第二試都有一道幾何題.平面幾何的知識(shí)競(jìng)賽要求:三角形的邊
2024-08-03 15:22
【總結(jié)】主講人對(duì)外經(jīng)貿(mào)大學(xué)附中沈海英立體幾何中的定值問(wèn)題第一課:立體幾何中定值問(wèn)題概述王秀彩特級(jí)教師工作室高中的立體幾何教學(xué)中,立體幾何圖形在變化過(guò)程中,其中某些幾何元素的幾何量保持不變,或幾何元素間的某些幾何性質(zhì)或位置關(guān)系不變,這些圖形變化中的不變因素我們稱之為定值,與之相關(guān)的問(wèn)題稱為定值問(wèn)題.定
2024-11-24 14:09
【總結(jié)】淺談圓錐曲線問(wèn)題中的平面幾何方法農(nóng)二師華山中學(xué)金兆斌(附三角形的內(nèi)角及外角平分線性質(zhì)的證明.)特別指出的是,上述性質(zhì)對(duì)所有的圓錐曲線都成立.OyxBACD更一般的,如果兩條直線與其對(duì)稱軸所成的角互補(bǔ),都有以上的性質(zhì).
2024-09-28 18:53