【總結(jié)】利潤最大問題利潤問題一.幾個量之間的關(guān)系.、售價、進(jìn)價的關(guān)系:利潤=售價-進(jìn)價、單價、數(shù)量的關(guān)系:總價=單價×數(shù)量、單件利潤、數(shù)量的關(guān)系:總利潤=單件利潤×數(shù)量二.在商品銷售中,采用哪些方法增加利潤?問題40元,售價是每件60元,每星期可賣出300件。
2025-04-29 06:14
【總結(jié)】第3課時拱橋問題與運動中的拋物線
2025-06-14 12:04
【總結(jié)】成都市中考壓軸題(二次函數(shù))精選【例一】.如圖,拋物線y=ax2+c(a≠0)經(jīng)過C(2,0),D(0,﹣1)兩點,并與直線y=kx交于A、B兩點,直線l過點E(0,﹣2)且平行于x軸,過A、B兩點分別作直線l的垂線,垂足分別為點M、N.(1)求此拋物線的解析式;(2)求證:AO=AM;(3)探究:①當(dāng)k=0時,直線y=kx與x軸重合,求出此時的值;②試說明無論k取何值,
2025-04-04 04:25
【總結(jié)】第二十二章二次函數(shù)實際問題與二次函數(shù)第2課時拱橋問題與運動中的拋物線
2025-06-21 00:29
【總結(jié)】《拋物線》練習(xí)2一、選擇題:2=ax的準(zhǔn)線是直線x=-1,那么它的焦點坐標(biāo)為 ()A.(1,0) B.(2,0) C.(3,0) D.(-1,0)(-2,0),且與直線x=2相切的動圓圓心的軌跡方程是 ()A.y2=-2x B.y2=-4x C.y2=-8x D.y2=-16x,若,那么等于()A.10
2025-08-17 06:07
【總結(jié)】實際問題與二次函數(shù)現(xiàn)有60米的籬笆要圍成一個舉行場地;問題1若矩形的一邊長為10米,它的面積是多少?現(xiàn)有60米的籬笆要圍成一個矩形場地;問題2若矩形的長分別為15米、20米、25米時,它們的面積分別是多少?問題3從上面兩問,同學(xué)們發(fā)現(xiàn)了什么?你能找到籬笆圍成的矩形的最大面積嗎?
2024-11-06 21:12
【總結(jié)】博興樂安實驗學(xué)校韓少華回顧與練習(xí)求下列二次函數(shù)的最大值或最小值:⑴y=2x2+3x-4;⑵y=-x2+4x練習(xí):分別在下列各范圍上求函數(shù)y=x2+2x-3的最值(1)x為全體實數(shù)(2)1≤x≤2(3)-2≤x≤2xO-2y2-11情景
2025-08-15 20:24
【總結(jié)】運用二次函數(shù)的性質(zhì)求實際問題的最大值和最小值的一般步驟:?求出函數(shù)解析式和自變量的取值范圍?配方變形,或利用公式求它的最大值或最小值。?檢查求得的最大值或最小值對應(yīng)的自變量的值必須在自變量的取值范圍內(nèi)。?頂點式,對稱軸和頂點坐標(biāo)公式:?利潤=售價-進(jìn)價.回味無窮:二次函數(shù)y=ax2+bx+c(a≠0)的性質(zhì)
2025-05-13 16:24
【總結(jié)】......二次函數(shù)恒成立問題2016年8月東莞莞美學(xué)校一、恒成立問題的基本類型:類型1:設(shè),(1)上恒成立;(2)上恒成立。類型2:設(shè)(1)當(dāng)時,上恒成立,上恒成立(2)當(dāng)時,上恒成立上
2025-03-24 06:26
【總結(jié)】 個性化學(xué)案二次函數(shù)綜合應(yīng)用題(拱橋問題)適用學(xué)科數(shù)學(xué)適用年級初中三年級適用區(qū)域全國課時時長(分鐘)60知識點二次函數(shù)解析式的確定、二次函數(shù)的性質(zhì)和應(yīng)用教學(xué)目標(biāo)。2學(xué)會用二次函數(shù)知識解決實際問題,掌握數(shù)學(xué)建模的思想,進(jìn)一步熟悉,點坐標(biāo)和線段之間的轉(zhuǎn)化。,體會到數(shù)學(xué)來源于生活,又服務(wù)于生活,感受數(shù)學(xué)的應(yīng)用價值。教學(xué)重點,并能理解
【總結(jié)】二次函數(shù)專題:角度一、有關(guān)角相等1、已知拋物線的圖象與軸交于、兩點(點在點的左邊),與軸交于點,,過點作軸的平行線與拋物線交于點,拋物線的頂點為,直線經(jīng)過、兩點.(1)求此拋物線的解析式;(2)連接、、,試比較和的大小,并說明你的理由.對于第(2)問,比較角的大小a、如果是特殊角,也就是我們能分別計算出這兩個角的大小,那么他們之間的大小關(guān)系就清楚了b
2025-03-24 06:24
【總結(jié)】二次函數(shù)綜合問題1:已知函數(shù)在區(qū)間內(nèi)單調(diào)遞減,則a的取值范圍是變式1:已知函數(shù)在區(qū)間(,1)上為增函數(shù),那么的取值范圍是_________.變式2:已知函數(shù)在上是單調(diào)函數(shù),求實數(shù)的取值范圍.2:已知函數(shù)在區(qū)間[0,m]上有最大值3,最小值2,則m的取值范圍是變式1:若函數(shù)的最大值為M,最小值為m,則M+m的值等于__
【總結(jié)】二次函數(shù)最大利潤問題,每件的成本是50元,為了合理定價,投放市場進(jìn)行試銷.據(jù)市場調(diào)查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本.(1)求出每天的銷售利潤y(元)與銷售單價x(元)之間的函數(shù)關(guān)系式;(2)求出銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少?(3)如果該企業(yè)要使每天的銷售利潤不低于4000
【總結(jié)】實際問題與二次函數(shù)教案實驗中學(xué)李三紅教學(xué)目標(biāo):1.通過對實際問題情景的分析確定二次函數(shù)的表達(dá)式,并體會二次函數(shù)的意義。2.能用配方法或公式法求二次函數(shù)的最值,并由自變量的取值范圍確定實際問題的最值。復(fù)習(xí)回顧:1、二次函數(shù)的圖象是一條,
2024-11-23 12:40
【總結(jié)】......二次函數(shù)與特殊四邊形綜合問題一、知識準(zhǔn)備:拋物線與直線形的結(jié)合表形式之一是,以拋物線為載體,探討是否存在一些點,使其能構(gòu)成某些特殊四邊形,有以下常風(fēng)的基本形式(1)拋物線上的點能否構(gòu)成平行四邊形