【總結】 個性化學案二次函數(shù)綜合應用題(拱橋問題)適用學科數(shù)學適用年級初中三年級適用區(qū)域全國課時時長(分鐘)60知識點二次函數(shù)解析式的確定、二次函數(shù)的性質和應用教學目標。2學會用二次函數(shù)知識解決實際問題,掌握數(shù)學建模的思想,進一步熟悉,點坐標和線段之間的轉化。,體會到數(shù)學來源于生活,又服務于生活,感受數(shù)學的應用價值。教學重點,并能理解
2025-03-24 06:26
【總結】二次函數(shù)專題:角度一、有關角相等1、已知拋物線的圖象與軸交于、兩點(點在點的左邊),與軸交于點,,過點作軸的平行線與拋物線交于點,拋物線的頂點為,直線經(jīng)過、兩點.(1)求此拋物線的解析式;(2)連接、、,試比較和的大小,并說明你的理由.對于第(2)問,比較角的大小a、如果是特殊角,也就是我們能分別計算出這兩個角的大小,那么他們之間的大小關系就清楚了b
2025-03-24 06:24
【總結】二次函數(shù)綜合問題1:已知函數(shù)在區(qū)間內單調遞減,則a的取值范圍是變式1:已知函數(shù)在區(qū)間(,1)上為增函數(shù),那么的取值范圍是_________.變式2:已知函數(shù)在上是單調函數(shù),求實數(shù)的取值范圍.2:已知函數(shù)在區(qū)間[0,m]上有最大值3,最小值2,則m的取值范圍是變式1:若函數(shù)的最大值為M,最小值為m,則M+m的值等于__
2025-04-04 04:25
【總結】二次函數(shù)最大利潤問題,每件的成本是50元,為了合理定價,投放市場進行試銷.據(jù)市場調查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本.(1)求出每天的銷售利潤y(元)與銷售單價x(元)之間的函數(shù)關系式;(2)求出銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少?(3)如果該企業(yè)要使每天的銷售利潤不低于4000
【總結】實際問題與二次函數(shù)教案實驗中學李三紅教學目標:1.通過對實際問題情景的分析確定二次函數(shù)的表達式,并體會二次函數(shù)的意義。2.能用配方法或公式法求二次函數(shù)的最值,并由自變量的取值范圍確定實際問題的最值。復習回顧:1、二次函數(shù)的圖象是一條,
2024-11-23 12:40
【總結】......二次函數(shù)與特殊四邊形綜合問題一、知識準備:拋物線與直線形的結合表形式之一是,以拋物線為載體,探討是否存在一些點,使其能構成某些特殊四邊形,有以下常風的基本形式(1)拋物線上的點能否構成平行四邊形
【總結】........二次函數(shù)存在性問題,動點問題,面積問題(m-2,0),B(m+2,0)兩點,記拋物線頂點為C,且AC⊥BC.(1)若m為常數(shù),求拋物線的解析式;(2)若m為小于0的常數(shù),那么(1)中的拋物線經(jīng)過怎么樣的平移可以使頂點在坐標原點?(3)
2025-03-24 06:25
【總結】反比例函數(shù)與一次函交點問題1.如圖,直線y=x﹣6分別交x軸,y軸于A,B,M是反比例函數(shù)y=(x>0)的圖象上位于直線上方的一點,MC∥x軸交AB于C,MD⊥MC交AB于D,AC?BD=4,則k的值為( ?。〢.﹣3 B.﹣4 C.﹣5 D.﹣62.如圖,直線y=-x+m交雙曲線y=于A、B兩點,交x軸于點C,交y軸于點D,過點A作AH⊥x軸于點H,連
2025-03-24 23:29
【總結】中國領先的中小學教育品牌精銳教育學科教師輔導講義講義編號年級:高二輔導科目:數(shù)學課時數(shù):3
2025-06-25 07:09
【總結】第四節(jié)拋物線1.拋物線的定義:平面內到____________________________________________________________叫做拋物線,定點F叫做拋物線的________,定直線l叫做拋物線的________.基礎梳理焦點一個定點F和一條定直線l(定點F不在l上)的距離相等的點的軌跡
2024-11-12 18:19
【總結】???xyo(1)配方。(2)畫圖象。(3)根據(jù)圖象確定函數(shù)最值。(看所給范圍內的最高點和最低點)122(a0)xxxyaxbxc??????求給定范圍內,二次函數(shù)最值的步驟:??2324yx???試判斷函數(shù)
2024-11-21 23:43
【總結】第七部分、拋物線的切線問題1.(08廣東)設,橢圓方程為=1,拋物線方程為.如圖6所示,過點F(0,b+2)作x軸的平行線,與拋物線在第一象限的交點為,已知拋物線在點的切線經(jīng)過橢圓的右焦點,(1)求滿足條件的橢圓方程和拋物線方程;(2)設分別是橢圓的左右端點,試探究在拋物線上是否存在點,使為直角三角形?若存在,請指出共有幾個這樣的點?并說明理由(不必具體求出這些點的坐標).
2025-06-07 22:55
【總結】實際問題與二次函數(shù)(1)問題1:求函數(shù)y=-x2+30x的最值問題2:求函數(shù)y=-x2+30x(0x30)的最值問題3:求函數(shù)y=-x2+30x(5x≤10)的最值(一)回顧舊知思考:結合上面題目,如何求二次函數(shù)的最值?應注意什么呢?在什么位置取最值?小結:1、找頂點,畫圖象,看關系,
2025-07-18 22:07
【總結】二次函數(shù)零點問題【探究拓展】探究1:設分別是實系數(shù)一元二次方程和的一個根,且求證:方程有且僅有一根介于之間.變式1:已知函數(shù)f(x)=ax2+4x+b(a0,a、b∈R),設關于x的方程f(x)=0的兩實根為x1、x2,方程f(x)=x的兩實根為α、β.(1)若|α-β|=1,求a、b的關系式;(2)若a、b均為負整數(shù)
2025-03-24 06:28
【總結】......二次函數(shù)在閉區(qū)間上的最值一、知識要點:一元二次函數(shù)的區(qū)間最值問題,核心是函數(shù)對稱軸與給定區(qū)間的相對位置關系的討論。一般分為:對稱軸在區(qū)間的左邊,中間,右邊三種情況.設,求在上的最大值與最小值。分析: