【總結(jié)】1直線與圓錐曲線的有關(guān)綜合問題,我們已經(jīng)接觸了一些,在我們看來就是三句話的實踐:(一)設(shè)而不求;(二)聯(lián)立方程組,根與系數(shù)的關(guān)系;(三)大膽計算分析,數(shù)形結(jié)合活思維.拋物線的簡單幾何性質(zhì)(三)這一節(jié)我們來做幾個關(guān)于直線與拋物線的問題……2作圖直覺嘗試解答分析:
2024-11-09 08:09
【總結(jié)】徐州市沛縣第二中學(xué)高三數(shù)學(xué)一輪復(fù)習(xí)導(dǎo)學(xué)案編寫人:劉洪金審核:高三數(shù)學(xué)備課組---------------------------------------------------------------------------------------------------------------------------------------------------解
2025-03-25 07:47
【總結(jié)】拋物線的簡單幾何性質(zhì)習(xí)題一【同步達(dá)綱練習(xí)】A級一、選擇題,則過A且與l相切圓的圓心軌跡是() =10x的焦點到準(zhǔn)線的距離是() ,x軸為對稱軸的拋物線的焦點在直線2x-4y+11=0上,則此拋物線的方程是()=11x =-11x =22x =-22x=2px(
2025-06-24 21:23
【總結(jié)】拋物線的簡單幾何性質(zhì)城郊中學(xué):代俊俊M是拋物線y2=2px(p>0)上一點,若點M的橫坐標(biāo)為x0,則點M到焦點的距離是x0+—2pOyx.FM.焦半徑及焦半徑公式拋物線上一點到焦點的距離P(x0,y0)在y2=2px上,P(x0,y
2024-11-18 13:30
【總結(jié)】1專題:對稱問題活動一:幾個常見對稱一、點關(guān)于點對稱例1.已知點A(5,8),B(4,1),試求A點關(guān)于B點的對稱點C的坐標(biāo)。二、直線關(guān)于點對稱例l1:3x-y-4=0關(guān)于點P(2,-1)對稱的直線l2的方程。三、點關(guān)于直線對
2025-01-10 04:40
【總結(jié)】橢圓專題練習(xí)1.【2017浙江,2】橢圓的離心率是A. B. C. D.2.【2017課標(biāo)3,理10】已知橢圓C:,(ab0)的左、右頂點分別為A1,A2,且以線段A1A2為直徑的圓與直線相切,則C的離心率為A. B. C. D.3.【2016高考浙江理數(shù)】已知橢圓C1:+y2=1(m1)與雙曲線C2:–y2=1(n
2025-06-18 19:07
【總結(jié)】復(fù)習(xí)課:拋物線主講:施海鵬作者:施海鵬高中數(shù)學(xué)課件網(wǎng)拋物線定義:平面內(nèi)與一個定點F和一條定直線l的距離相等的點的軌跡叫做拋物線。點F叫做拋物線的焦點,直線L叫做拋物線的準(zhǔn)線。拋物線拋物線的焦點拋物線的準(zhǔn)線即比值為1l┑Fp作者:施海鵬高中數(shù)學(xué)課件網(wǎng)
2024-11-09 06:22
【總結(jié)】......拋物線練習(xí)題一、選擇題1.(2014·重慶高考文科·T8)設(shè)分別為雙曲線的左、右焦點,雙曲線上存在一點使得則該雙曲線的離心率為()A.B.C.D.【解題提
2025-03-25 02:27
【總結(jié)】教學(xué)教法分析課前自主導(dǎo)學(xué)易錯易誤辨析課堂互動探究當(dāng)堂雙基達(dá)標(biāo)課后知能檢測教師備課資源拋物線的幾何性質(zhì)●三維目標(biāo)1.知識與技能(1)理解拋物線的幾何性質(zhì).(
2024-11-17 17:16
【總結(jié)】平面解析幾何中的對稱問題李新林汕頭市第一中學(xué)515031對稱性是數(shù)學(xué)美的重要表現(xiàn)形式之一,在數(shù)學(xué)學(xué)科中對稱問題無處不在。在代數(shù)、三角中有對稱式問題;在立體幾何中有中對稱問題對稱體;在解析幾何中有圖象的對稱問題。深入地研究數(shù)學(xué)中的對稱問題有助于培養(yǎng)學(xué)生分析解決問題的能力,有助于提高學(xué)生的數(shù)學(xué)素質(zhì)。在平面解析幾何中,對稱問題的存在尤其普遍。平面解析幾何中的對稱問題在
2025-03-25 23:31
【總結(jié)】掌握拋物線的幾何性質(zhì),特別是拋物線的特殊點、特殊線的特征及其內(nèi)在聯(lián)系.掌握拋物線的定義及其標(biāo)準(zhǔn)方程,鞏固掌握應(yīng)用拋物線的定義分析解決問題的一般方法.掌握拋物線的知識結(jié)構(gòu),明確其重點是直線與拋物線的位置關(guān)系.復(fù)習(xí)目標(biāo)拋物線拋物線的定義拋物線的標(biāo)準(zhǔn)方程
2024-11-17 19:45
【總結(jié)】......拋物線專題復(fù)習(xí)講義及練習(xí)★知識梳理★、類型及其幾何性質(zhì)():標(biāo)準(zhǔn)方程圖形焦點準(zhǔn)線范圍對稱軸軸軸頂點
2025-04-16 23:52
【總結(jié)】解析幾何中的最值問題一、教學(xué)目標(biāo)解析幾何中的最值問題以直線或圓錐曲線作為背景,以函數(shù)和不等式等知識作為工具,具有較強的綜合性,這類問題的解決沒有固定的模式,其解法一般靈活多樣,且對于解題者有著相當(dāng)高的能力要求,正基于此,這類問題近年來成為了數(shù)學(xué)高考中的難關(guān)。二、教學(xué)重點方法的靈活應(yīng)用。三、教學(xué)程序1、基礎(chǔ)知識。探求解析幾何最值的方法有以下幾種。⑴函數(shù)法
2024-10-04 16:15
【總結(jié)】解析幾何中的定值問題1、(2014安徽高考)如圖,已知兩條拋物線,過點的三條直線、和.與和分別交于兩點,與和分別交于,與和分別交于.記的面積分別為與,求證的值為定值.證明:設(shè)直線的方程分別為.把直線與拋物線聯(lián)立求解得:,,.由三角形三頂點坐標(biāo)面積公式得:,,所以=為定值.注:(1)設(shè)?ABC三頂點的坐標(biāo)分別為,則;(2)原解答包含
2025-08-05 16:44
【總結(jié)】第2課時§結(jié)識拋物線教學(xué)目標(biāo)1、經(jīng)歷探索二次函數(shù)2xy?的圖象的作法和性質(zhì)的過程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗2、經(jīng)歷探索二次函數(shù)2xy?的圖象的作法和性質(zhì)的過程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗3、能夠利用描點法作出2xy?的圖象,并能根據(jù)圖象認(rèn)識和理解二次函數(shù)表達(dá)式與圖象之間的聯(lián)系教學(xué)重
2024-11-24 22:06