【總結】機動目錄上頁下頁返回結束高等數學A電子教案第二節(jié)一、利用直角坐標計算二重積分二重積分的計算法二、利用極坐標計算二重積分三、二重積分的換元法第十章機動目錄上頁下頁返回結束高等數學A電子教案xbad]
2025-05-01 18:15
【總結】如果積分區(qū)域D為:),()(21xyx????其中函數、在區(qū)間上連續(xù).)(1x?)(2x?],[ba第二節(jié)二重積分的計算一、利用直角坐標計算二重積分[X-型區(qū)域])(2xy??abD)(1xy??Dba)(2xy??)(
2025-11-29 01:13
【總結】1第七章:二重積分一、基本概念及結論(1)曲頂柱體的體積)]0),([),(??yxfyxfz曲頂柱體是指它的底面是在平面上的有界閉區(qū)域,它的側面是以的邊界為準線,母線平行于軸的柱面,它的頂是連續(xù)曲面xoyDDzxyzo),(y
2026-01-10 15:11
【總結】高等數學論文——淺談二重積分聽了肖老師整個大一的數學課,讓我深刻的感覺到數學的世界是多姿多彩的,數學的語言的優(yōu)雅完美的;正如老師所說的一樣,他的數學課就像是一篇散文。原來,數學還可以這么學。用幾個簡單的數學方程,在空間中組合成一個個靈動的圖形,這便是二重積分,這也是我想和大家一起分享的解題心得。首先讓我們明確定義:有界函數在有界閉區(qū)域D上的二重積分為。其中,為(i=1,2,...
2026-01-08 03:32
【總結】一、問題的提出二、二重積分的概念三、二重積分的性質四、小結思考題第一節(jié)二重積分的概念與性質柱體(cylindricalbody)體積=底面積×高特點:平頂.曲頂柱體體積=?特點:曲頂(curvedvertexsurface).),(yxfz?D1.曲頂柱體的體積
2026-01-10 23:34
【總結】第一篇:利用二重積分證明不等式 f(x),g(x)是[a,b] òb af(x)dxòg(x)dx£(b-a)òf(x)g(x)dxaabb 證明由于f(x),g(x)是[a,b]單調增加的函...
2025-10-18 16:26
【總結】第三節(jié)二重積分的應用一、曲面的面積二、平面薄片的重心三、平面薄片的轉動慣量四、平面薄片對質點的引力把定積分的元素法推廣到二重積分的應用中:???DdxdyyxfUdUUdyxfdyxdyxfdDUDDU.),(),(.),()
2025-07-20 17:41
【總結】1第十章重積分一元函數積分學多元函數積分學重積分曲線積分曲面積分2三、二重積分的性質§二重積分的概念與性質一、引例二、二重積分的定義與可積性四、曲頂柱體體積的計算3解法:類似定積分解決問題的思想:一、引例給定曲頂柱體
2026-01-10 14:43
【總結】第九節(jié)二重積分的計算(一)在直角坐標系下計算二重積分如果積分區(qū)域為:,bxa??).()(21xyx????其中函數、在區(qū)間上連續(xù).)(1x?)(2x?],[ba在直角坐標系下計算二重積分[X-型]
2025-08-23 08:49
【總結】極坐標系下二重積分的計算.??drdrd????Ddxdyyxf),(一、極坐標系下二重積分的一般公式1、面積元素.?drdrdxdy??或i???i??ii??????iirrr???AoDir?.)sin,cos(???Drdrdrrf???2、一般公式
2025-11-29 10:11
【總結】§二重積分的計算方法一、利用直角坐標計算二重積分在直角坐標系下用平行于坐標軸的直線網來劃分區(qū)域D,??????DDdxdyyxfdyxf),(),(dxdyd??xyoD則面積元素為xoabxdxx?.)(??badxxAVRR?xyo?xxyo
2026-01-03 12:17
【總結】上一頁目錄下一頁退出§無界區(qū)域上簡單反常二重積分的計算與一元函數在無限區(qū)間上的反常積分類似,如果允許二重積分的積分區(qū)域D為無界區(qū)域(如全平面,半平面,有界區(qū)域的外部等),則可定義無界區(qū)域上的反常二重積分.定義設D是平面上一無界區(qū)域,函數f(x,y)在其上有定義,用任意光滑曲線Γ在D中劃出有界區(qū)域
2026-01-03 13:50
【總結】一、利用直角坐標系計算二重積分第二節(jié)二重積分的計算方法二、利用極坐標計算二重積分AoDi??irr?iirrr???ii??????i???iiiiiirrr????????????2221)(21iiiirrr???????)2(21iiiiirrrr????????2
2025-10-08 21:14
【總結】第六節(jié)二重積分的概念及性質一、引例二、二重積分的定義三、二重積分的性質一、引例解分三步解決這個問題.引例1質量問題.已知平面薄板D的面密度(即單位面積的質量)是點(x,y)的連續(xù)函數,求D的質量.),(x???(1)分割將D用兩組曲線任意分割成n個小塊
2025-07-20 20:18
【總結】1§在直角坐標系下二重積分的計算何意義來尋求二重積分的計算方法.設曲頂柱體的曲頂是z=?(x,y)(≥0),底是區(qū)域D,zyOxDz=?(x,y)1()x?2()x?baD是xy平面上由直線12(),()yxyx????與曲線所圍成.x=a,x=b(ab
2025-10-09 12:59