【總結(jié)】知識回顧等比數(shù)列{an}的求和公式及推導(dǎo)方法。問題探究??也成等比數(shù)列。,,求證:,項和為的前:已知等比數(shù)列 探究142171471SSSSSSnann??等于多少?項的和,那么它前項的和等于,前項和等于:如果一個等比數(shù)列前 探究1550101052??證明。請間滿足怎樣的關(guān)系?并,,
2024-11-18 08:10
【總結(jié)】課題:必修⑤三維目標(biāo):1、知識與技能(1)理解等差數(shù)列前項和的定義以及等差數(shù)列前項和公式推導(dǎo)的過程,并理解推導(dǎo)此公式的方法——倒序相加法,記憶公式的兩種形式;(2)用方程思想認(rèn)識等差數(shù)列前項和的公式,利用公式求;等差數(shù)列通項公式與前項和的公式兩套公式涉及五個字母,已知其中三個量求另兩個值;(3)會用等差數(shù)列的前項和公式解決一些簡單的與前項和有關(guān)的問題.
2025-06-07 23:27
【總結(jié)】知識回顧1.等比數(shù)列的定義;2.等比數(shù)列的通項公式;3.等比數(shù)列的中項公式;4.等比數(shù)列的下標(biāo)公式。問題探究????。和項的前,請推導(dǎo)等比數(shù)列公比為,中,前項為:等比數(shù)列 探究nnnSnaqaa1)(其中 請你證明:,都不為,,且:如果 探究*nnnn
【總結(jié)】等差數(shù)列前n項和說課稿各位評委,您們好。。下面我從教材分析、教學(xué)目標(biāo)分析、教法與學(xué)法分析、教學(xué)過程分析、板書設(shè)計分析、評價分析等六個方面對本節(jié)課設(shè)計進(jìn)行說明。一、教材分析1、教材的地位與作用(1)等差數(shù)列的前n項和的公式是等差數(shù)列的定義、通項、前n項和三大重要內(nèi)容之一。(2)推導(dǎo)等差數(shù)列的前n項和公式提出了一種嶄新的數(shù)學(xué)方法——倒序求和法。(3)等差數(shù)列的前n項和公式
2025-04-07 02:59
【總結(jié)】《等比數(shù)列前n項和》(第二課時)作業(yè)1、在等比數(shù)列中,3,6432321???????aaaaaa,則?????76543aaaaa()A.811B.1619C.89D.432、在等比數(shù)列??na中,55,551??Sa,則公
2024-11-15 21:17
【總結(jié)】通項公式和前n項和1、新課講授:求數(shù)列前N項和的方法1.公式法(1)等差數(shù)列前n項和:特別的,當(dāng)前n項的個數(shù)為奇數(shù)時,,即前n項和為中間項乘以項數(shù)。這個公式在很多時候可以簡化運算。(2)等比數(shù)列前n項和:q=1時,,特別要注意對公比的討論。(3)其他公式較常見公式:1、2、3、[例1
2025-03-25 02:53
【總結(jié)】等比數(shù)列的前n項和教學(xué)過程導(dǎo)入新課師國際象棋起源于古代印度.相傳國王要獎賞國際象棋的發(fā)明者.這個故事大家聽說過嗎?生知道一些,踴躍發(fā)言師“請在第一個格子里放上1顆麥粒,第二個格子里放上2顆麥粒,第三個格子里放上4顆麥粒,以此類推.每一個格子里放的麥粒都是前一個格子里放的麥粒的2倍.直到第64個
2024-11-19 21:23
【總結(jié)】求遞推數(shù)列通項公式的常用方法歸納目錄一、概述183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。
2024-10-19 20:27
【總結(jié)】等比數(shù)列的前n項和第一課時::an=amqn-m2.通項公式:an=a1qn-1等比數(shù)列要點整理4.性質(zhì):若m、n、p、q∈N*,m+n=p+q,則am·an=ap·a
2024-11-18 12:17
【總結(jié)】第一頁,編輯于星期六:點三十四分。,2.3等差數(shù)列的前n項和第二課時等差數(shù)列前n項和的應(yīng)用,第二頁,編輯于星期六:點三十四分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁,編輯于星期六:點三十四分。,第...
2024-10-22 18:53
【總結(jié)】等比數(shù)列的前n項和第二課時一、復(fù)習(xí)等比數(shù)列的前n項和公式:1(1)(1)1????nnaqSqq1(1)1????nnaaqSqq由an=a1qn-1代入可得特別地,當(dāng)q=1時,Sn=na1注意:“錯位相減法”的過程
2024-11-17 19:50
【總結(jié)】等差數(shù)列的前n項和第一課時一般地,我們稱a1+a2+…+an為數(shù)列{an}的前n項和,常用Sn表示,即Sn=a1+a2+…+an練習(xí):試求下列數(shù)列的前100項和.(1)2,2,2,2,……(2)-1,1,-1,1,……(3)1,2,3,4,……一、新課1
2024-11-17 12:02
【總結(jié)】等差數(shù)列的前n項和第三課時2.等差數(shù)列的前n項和公式:1()2nnnaaS??1.若已知數(shù)列{an}前n項和為Sn,則該數(shù)列的通項公式為S1,n=1Sn-Sn-1,n≥2an=一、復(fù)習(xí)3.若數(shù)列{an}為等差數(shù)列:1(1)2nnnad
【總結(jié)】等差數(shù)列的前n項和第二課時2.等差數(shù)列的前n項和公式:1()2nnnaaS??1.若已知數(shù)列{an}前n項和為Sn,則該數(shù)列的通項公式為S1,n=1Sn-Sn-1,n≥2an=一、復(fù)習(xí)1(1)2nnnad???注:n項和的方法“倒序相加法”
【總結(jié)】求數(shù)列通項公式的十種方法一、公式法例1已知數(shù)列滿足,,求數(shù)列的通項公式。解:兩邊除以,得,則,故數(shù)列是以為首項,以為公差的等差數(shù)列,由等差數(shù)列的通項公式,得,所以數(shù)列的通項公式為。評注:本題解題的關(guān)鍵是把遞推關(guān)系式轉(zhuǎn)化為,說明數(shù)列是等差數(shù)列,再直接利用等差數(shù)列的通項公式求出,進(jìn)而求出數(shù)列的通項公式。二、利用例2.若和分別表示數(shù)列和的前項和,對任意正整數(shù),.求數(shù)列的
2024-09-01 06:16