【總結】空間向量的坐標運算——空間直角坐標系.空間向量的直角坐標運算.單位正交基底,空間直角坐標系,向量的坐標xyzO(x,y,z)ijkPP’OP=OP’+P’P=Xi+yj+zk啟示:空間向量OP=(x,y,z)Xiyjzk則),(2211
2025-08-16 01:22
【總結】§3.空間向量的正交分解及其坐標表示知識點一向量基底的判斷已知向量{a,b,c}是空間的一個基底,那么向量a+b,a-b,c能構成空間的一個基底嗎?為什么?解∵a+b,a-b,c不共面,能構成空間一個基底.假設a+b,a-b,c共面,則存在x,
2024-12-08 01:49
【總結】第五章平面向量第五章第四節(jié)向量的應用及向量與其他知識的綜合問題基礎梳理導學思想方法技巧課堂鞏固訓練4考點典例講練3課后強化作業(yè)5基礎梳理導學重點難點引領方向重點:了解用平面向量的數(shù)量積可以處理有關長度、角度和垂直的問題.難點:1.
2025-11-01 04:23
【總結】空間向量的正交分解及其坐標運算空間直角坐標系.向量的直角坐標表示及運算.一、空間向量的坐標分解給定一個空間坐標系和向量,且設為空間兩兩垂直的向量,p,,ijkxyzOpkijPQ,,,zkOQ實數(shù)存在所確定的平面上在,,,,
2025-11-09 00:51
【總結】第二章平面向量第二章2.3平面向量的基本定理及坐標表示第二章2.平面向量的正交分解及坐標表示2.平面向量的坐標運算課前自主預習課堂典例講練課后強化作業(yè)課前自主預習溫故知新1.所謂的共線(平行)向量是指________,向量共線定理的內(nèi)容是__
2025-06-19 16:22
【總結】1向量空間、基和維數(shù)2一、向量空間概念則稱V是向量空間定義設V是非空的n維向量的集合,如果(1)V對加法運算具有封閉性,即,有(2)V對數(shù)乘運算具有封閉性,
2025-07-25 16:20
【總結】空間向量的坐標運算一.問題情境四.課堂練習五.小結作業(yè)二.學生活動三.數(shù)學應用蘇教版選修1-1海安縣實驗中學高二數(shù)學備課組1.空間向量的基本定理:2.平面向量的坐標表示及運算律:(,,)pxiyjijxy??(1)若分別是軸上同方向的兩個單位向量(,)pxy則的坐標
2025-11-01 01:37
【總結】導入新課復習上一節(jié)課,我們借助“類比思想”把平面向量的有關概念及加減運算擴展到了空間.(1)加法法則及減法法則平行四邊形法則或三角形法則.(2)運算律加法交換律及結合律.兩個空間向量的加、減法與兩個平面向量的加、減法實質(zhì)是
2025-06-12 19:01
【總結】第四講空間向量一、定義:(1)已知,則(2)已知,則;;(3)數(shù)量積:注:;;(4)應用:已知=二、空間向量解決空間立體幾何問題:1、位置關系判定:(1)線線平行:線線垂直:(2)線面平行:(其中為平面的法向量)線面垂直:(3)面面平行:面面垂直:2、求夾角:(1)線線角:,其中(2)線面角:,其中(3)二
2025-03-25 06:42
【總結】數(shù)量積運算一、兩個向量的夾角兩條相交直線的夾角是指這兩條直線所成的銳角或直角,即取值范圍是(0°,90°],而向量的夾角可以是鈍角,其取值范圍是[0°,180°]二、兩個向量的數(shù)量積注:①兩個向量的數(shù)量積是數(shù)量,而不是向量.②規(guī)定:零向量與任意向量的數(shù)量積等于零.a
2025-01-22 01:08
【總結】空間向量的坐標運算(一)儋州市第一中學數(shù)學組吳應杰空間向量的基本定理:如果三個向量不共面,那么對空間任一向量,存在一個唯一的有序實數(shù)組x、y、z,使得:c,b,a???p?czbyaxp?????cba,,叫做空間的一個______基底空間任意三個不共面向
2025-10-08 13:31
【總結】高考總復習.理科.數(shù)學第八章平面向量高考總復習.理科.數(shù)學考綱分解解讀高考總復習.理科.數(shù)學(1)了解向量的實際背景.(2)理解平面向量的概念,理解兩個向量相等的含義.(3)理解向量的幾何表示.2.(1)掌握向量加法、減法的運算,并理解其幾何意義.
2025-08-01 17:58
【總結】第六節(jié)空間向量知識提要1.空間向量的概念:在空間,我們把具有和的量叫做向量。2.空間向量的運算。定義:與平面向量運算一樣,空間向量的加法、減法與數(shù)乘運算如下(如圖)。;;運算律:⑴加法交換律:⑵加法結合律:⑶數(shù)乘分配律:3.共線向量。(1)如果表示空間向量的有向線段所在的直線
2025-07-23 04:56
【總結】教學目的與要求:①理解向量空間的定義②掌握向量空間的性質(zhì)第六章向量空間§重點:向量空間的定義與性質(zhì)難點:向量空間的定義關鍵:向量空間定義中的兩種運算講授方式:講授一.定義和例子令是一個數(shù)域.中的元素用小寫拉丁字母來表示.令是
2025-08-05 04:13
【總結】4.平面向量的基本定理、平面向量的坐標表示及平面向量的坐標運算.5.平面向量的數(shù)量積及向量的應用.1.向量的概念,向量的幾何表示,共線向量的概念.2.向量的加法、減法法則.3.實數(shù)與向量的積、兩個向量共線的充要條件.3.掌握平面向量的數(shù)量積及其幾何意義,能用平面向量的數(shù)量積處理有關長度、角度和垂直的
2025-05-19 17:09