【總結(jié)】一、復(fù)習(xí)用空間向量解決立體幾何問(wèn)題的“三步曲”。(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問(wèn)題中涉及的點(diǎn)、直線(xiàn)、平面,把立體幾何問(wèn)題轉(zhuǎn)化為向量問(wèn)題;(2)通過(guò)向量運(yùn)算,研究點(diǎn)、直線(xiàn)、平面之間的位置關(guān)系以及它們之間距離和夾角等問(wèn)題;(3)把向量的運(yùn)算結(jié)果“翻譯”成相應(yīng)的幾何意義。(化為向量問(wèn)題)(進(jìn)行向量運(yùn)算)(
2024-11-09 03:30
【總結(jié)】立體幾何中探索性問(wèn)題的向量解法近幾年的高考對(duì)新課程增加的新內(nèi)容的考查形式和要求已經(jīng)發(fā)生重大變化,向量、導(dǎo)數(shù)等內(nèi)容已經(jīng)由解決問(wèn)題的輔助地位上升為分析問(wèn)題和解決問(wèn)題時(shí)必不可少的工具,成為綜合運(yùn)用數(shù)學(xué)知識(shí)、多角度展開(kāi)解題思路的重要命題素材。高考試卷中立體幾何試題不斷出現(xiàn)了一批具有探究性、開(kāi)放性的試題,對(duì)這些試題的研究不難發(fā)現(xiàn),如果靈活的運(yùn)用平面向量和空間向量知識(shí)來(lái)探求這類(lèi)問(wèn)題,將是更好的形與數(shù)的結(jié)
2024-10-04 15:35
【總結(jié)】空間向量之應(yīng)用3利用空間向量求距離課本P42如果表示向量a的有向線(xiàn)段所在直線(xiàn)垂直于平面?,則稱(chēng)這個(gè)向量垂直于平面?,記作a⊥?.如果a⊥?,那么向量a叫做平面?的法向量.?la課本P33已知向量ABa?和軸l,e是l上與l同方向的單位向量.作
2025-01-08 13:41
【總結(jié)】1用空間向量處理立體幾何的問(wèn)題立體幾何著重的是研究點(diǎn)、線(xiàn)、面之間的關(guān)系,研究空間三種位置關(guān)系(即空間直線(xiàn)與直線(xiàn)、直線(xiàn)與平面、平面與平面)以及三種角(異面直線(xiàn)所成的角、直線(xiàn)與平面所成的角和二面角)的計(jì)算。自上海高考試卷內(nèi)容改革以來(lái),純粹用立體幾何的公理、定理來(lái)證明或計(jì)算立體幾何問(wèn)題越來(lái)越少,而借助于向量的計(jì)算方法來(lái)處理立體幾何的問(wèn)題卻越來(lái)越多。本講座就是詳細(xì)
2024-09-05 17:12
【總結(jié)】借助向量解立體幾何問(wèn)題知識(shí)要點(diǎn)(其中為向量的夾角)。一、求點(diǎn)到平面的距離定義:一點(diǎn)到它在一個(gè)平面內(nèi)的正射影的距離叫做點(diǎn)到平面的距離。即過(guò)這個(gè)點(diǎn)到平面垂線(xiàn)段的長(zhǎng)度。一般方法:利用定義先做出過(guò)這個(gè)點(diǎn)到平面的垂線(xiàn)段,再計(jì)算這個(gè)垂線(xiàn)段的長(zhǎng)度。PBA向量法:PA
2024-11-07 01:07
【總結(jié)】向量代數(shù)空間解析幾何定義:既有大小又有方向的量稱(chēng)為向量.相等向量、負(fù)向量、向徑.零向量、向量的模單位向量、向量代數(shù)(2)向量的分解式:},,{zyxaaaa??.,,,,軸上的投影分別為向量在其中zyxaaazyxkajaiaazyx??????
2024-10-04 17:17
【總結(jié)】利用空間向量解立體幾何問(wèn)題2、例2已知三角形的頂點(diǎn)是,,,試求這個(gè)三角形的面積。分析:可用公式來(lái)求面積解:∵,,∴,,,∴,∴所以,.1、綜述(1)由于任意兩個(gè)空間向量都可以轉(zhuǎn)化為平面向量,所以空間兩個(gè)向量的夾角的定義和取值范圍、兩個(gè)向量垂直的定義和符號(hào)、兩個(gè)空間向量的數(shù)量積等等,都與平面向量相同。(2)利用空間向量解題的方法有2類(lèi):(i)利
2025-06-07 16:39
【總結(jié)】空間向量在立幾中應(yīng)用空間向量在立體幾何中的應(yīng)用空間向量在立幾中應(yīng)用利用向量判斷位置關(guān)系利用向量可證明四點(diǎn)共面、線(xiàn)線(xiàn)平行、線(xiàn)面平行、線(xiàn)線(xiàn)垂直、線(xiàn)面垂直等問(wèn)題,其方法是通過(guò)向量的運(yùn)算來(lái)判斷,這是數(shù)形結(jié)合的典型問(wèn)題空間向量在立幾中應(yīng)用例1、在正方體AC1中,E、F分別是BB1、CD的中點(diǎn),求
2025-07-20 05:00
【總結(jié)】第一篇:淺談?dòng)孟蛄糠ㄗC明立體幾何中的幾個(gè)定理 淺談?dòng)孟蛄糠ㄗC明立體幾何中的幾個(gè)定理 15號(hào) 海南華僑中學(xué)(570206)王亞順 摘要:向量是既有代數(shù)運(yùn)算又有幾何特征的工具,在高中數(shù)學(xué)的解題中起...
2024-11-06 07:25
【總結(jié)】歡迎交流唯一QQ1294383109希望大家互相交流空間向量與立體幾何一、選擇題1.若不同直線(xiàn)l1,l2的方向向量分別為μ,v,則下列直線(xiàn)l1,l2中既不平行也不垂直的是()A.μ=(1,2,-1),v=(0,2,4)B.μ=(3,0,-1),v=(0,0,2)C.μ=(0,2,-3)
2025-08-13 17:46
【總結(jié)】利用空間向量解決立體幾何問(wèn)題一:利用空間向量求空間角(1)兩條異面直線(xiàn)所成的夾角范圍:兩條異面直線(xiàn)所成的夾角的取值范圍是。向量求法:設(shè)直線(xiàn)的方向向量為,其夾角為,則有1.在正三棱柱ABC-A1B1C1,若AB=BB1,則AB1與C1B所成角的大小( )A.60° B.90°C.105°
2025-06-07 16:29
【總結(jié)】第一篇:《立體幾何VS空間向量》教學(xué)反思 我這節(jié)公開(kāi)課的題目是《立體幾何VS空間向量》選題背景是必修2學(xué)過(guò)立體幾何而選修21又學(xué)到空間向量在立體幾何中的應(yīng)用。學(xué)生有先入為主的觀念,總想用舊方法卻解體...
2024-11-16 02:21
【總結(jié)】立體幾何中的軌跡問(wèn)題高考數(shù)學(xué)有一類(lèi)學(xué)科內(nèi)的綜合題,它們的新穎性、綜合性,值得我們重視,在知識(shí)網(wǎng)絡(luò)交匯點(diǎn)處設(shè)計(jì)試題是高考命題改革的一個(gè)方向,以空間問(wèn)題為為背景的軌跡問(wèn)題作為解析幾何與立體幾何的交匯點(diǎn),由于知識(shí)點(diǎn)多,數(shù)學(xué)思想和方法考查充分,求解比較困難。通常要求學(xué)生有較強(qiáng)的空間想象能力,以及能夠把空間問(wèn)題轉(zhuǎn)化到平面上,再結(jié)合解析幾何方法求解,以下精選幾個(gè)問(wèn)題來(lái)對(duì)這一問(wèn)題進(jìn)行探討,旨在探索題型規(guī)律
2024-10-04 16:57
【總結(jié)】第四課文化的繼承性與文化發(fā)展課標(biāo)要求解析中華民族傳統(tǒng)文化在現(xiàn)實(shí)生活中的作用,闡述繼承傳統(tǒng)文化要“取其精華,去其糟粕”的道理?!粲懻摚喝绾慰创齻鹘y(tǒng)習(xí)俗的價(jià)值?!魪墓偶墨I(xiàn)中摘錄一些至今仍被頻繁引用的傳統(tǒng)道德格言,討論繼承和發(fā)揚(yáng)中華傳統(tǒng)美德在今天的作用。◆設(shè)計(jì)展板:我國(guó)一些建筑、藝術(shù)、服飾等風(fēng)格和形式的變遷,體現(xiàn)著傳統(tǒng)與現(xiàn)代結(jié)合之美。基本觀點(diǎn)1、
2025-05-11 22:03
【總結(jié)】;菲華論壇;在西墎城,要小心壹點(diǎn).壹旦有人對(duì)付烈焰,你就立刻帶著所有烈焰の人,進(jìn)入鞠氏宅院.”鞠言對(duì)高鳳說(shuō)道.“嗯,俺明白.”高鳳點(diǎn)頭.她也想跟著鞠言壹起走,但是,她不能將整個(gè)烈焰商會(huì)扔下.至于帶著烈焰の所有人跟鞠言走,那就更不可能了.“事不宜遲,鞠言,俺們立刻返回藍(lán)曲郡城.”鄒尚云揮手說(shuō)道.兩人當(dāng)即,便離開(kāi)西墎
2025-08-04 23:24