【總結(jié)】ZPZ空間“角度”問(wèn)題設(shè)直線,lm的方向向量分別為,abla?mla?mb???若兩直線所成的角為,則,lm(0)2???≤≤cosabab???復(fù)習(xí)引入(1)定義:設(shè)a,b是兩條異面直線,過(guò)空
2025-06-16 12:13
【總結(jié)】第一篇:淺談?dòng)孟蛄糠ㄗC明立體幾何中的幾個(gè)定理 淺談?dòng)孟蛄糠ㄗC明立體幾何中的幾個(gè)定理 15號(hào) 海南華僑中學(xué)(570206)王亞順 摘要:向量是既有代數(shù)運(yùn)算又有幾何特征的工具,在高中數(shù)學(xué)的解題中起...
2024-11-06 07:25
【總結(jié)】立體幾何中的向量方法—求空間角?立體幾何這一考點(diǎn)在廣東高考試卷中占有很大比例,11年19分12年18分13年24分。這些題目也是我們?nèi)?zhēng)取力求滿分的題目。主要考查三視圖問(wèn)題,點(diǎn)線面位置關(guān)系問(wèn)題,還有就是大題.大題主要有垂直、平行、角度、體積。對(duì)于角度問(wèn)題,一直是一個(gè)難點(diǎn)。大體有兩種求法,一類是傳統(tǒng)方法,一做(找)二證三求,另一種方
【總結(jié)】立體幾何中探索性問(wèn)題的向量解法近幾年的高考對(duì)新課程增加的新內(nèi)容的考查形式和要求已經(jīng)發(fā)生重大變化,向量、導(dǎo)數(shù)等內(nèi)容已經(jīng)由解決問(wèn)題的輔助地位上升為分析問(wèn)題和解決問(wèn)題時(shí)必不可少的工具,成為綜合運(yùn)用數(shù)學(xué)知識(shí)、多角度展開(kāi)解題思路的重要命題素材。高考試卷中立體幾何試題不斷出現(xiàn)了一批具有探究性、開(kāi)放性的試題,對(duì)這些試題的研究不難發(fā)現(xiàn),如果靈活的運(yùn)用平面向量和空間向量知識(shí)來(lái)探求這類問(wèn)題,將是更好的形與數(shù)的結(jié)
2024-10-04 15:35
【總結(jié)】一、復(fù)習(xí)目標(biāo):1、理解直線的方向向量與平面的法向量并會(huì)求直線的方向向量與平面的法向量。2、理解和掌握向量共線與共面的判斷方法。3、用向量法會(huì)熟練判斷和證明線面平行與垂直。立體幾何中的向量方法(一)第十三章《空間向量與立體幾何》二、重難點(diǎn):概念與方法的運(yùn)用三、教學(xué)方法:探析歸納,講練結(jié)合。四、教學(xué)過(guò)程(一)、
2024-11-12 18:10
2024-11-09 08:06
【總結(jié)】第一篇:用向量方法解立體幾何題(老師用) 用向量方法求空間角和距離 在高考的立體幾何試題中,求角與距離是常考查的問(wèn)題,其傳統(tǒng)的“三步曲”解法:“作圖、證明、解三角形”,作輔助線多、技巧性強(qiáng),是教學(xué)...
2024-10-14 09:02
【總結(jié)】[備考方向要明了]考什么怎么考.、直線與平面、平面與平面的垂直、平行關(guān)系.(包括三垂線定理).、直線與平面、平面與平面的夾角的計(jì)算問(wèn)題.了解向量方法在研究立體幾何問(wèn)題中的應(yīng)用.,而平面法向量則多滲透在解答題中考查.、面位置關(guān)系,在高考有所體現(xiàn),如2012年陜西T18,可用向量法證明.,多以解答題形式考查,并且作為解答題的第二種方法考查,
2025-06-25 00:21
【總結(jié)】立體幾何中的翻折問(wèn)題連州中學(xué)周騰達(dá)圖形的展開(kāi)與翻折問(wèn)題就是一個(gè)由抽象到直觀,由直觀到抽象的過(guò)程.在歷年高考中以圖形的展開(kāi)與折疊作為命題對(duì)象時(shí)常出現(xiàn),因此,關(guān)注圖形的展開(kāi)與折疊問(wèn)題是非常必要的.折疊問(wèn)題2020年高考的熱點(diǎn),預(yù)測(cè)明年高考也應(yīng)是一個(gè)熱點(diǎn).把一個(gè)平面圖形按某種要求折
2024-11-09 05:40
【總結(jié)】分類突破題型一、利用向量證明平行與垂直例1如圖所示,已知直三棱柱ABC—A1B1C1中,△ABC為等腰直角三角形,∠BAC=90°,且AB=AA1,D、E、F分別為B1A、
2025-08-05 10:54
【總結(jié)】2020年12月19日星期六用空間向量解決立體幾何問(wèn)題的步驟:(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問(wèn)題中涉及的點(diǎn)、直線、平面,把立體幾何問(wèn)題轉(zhuǎn)化為向量問(wèn)題;(2)通過(guò)向量運(yùn)算,研究點(diǎn)、直線、平面之間的位置關(guān)系以及它們之間距離和夾角等問(wèn)題;(3)把向量的運(yùn)算結(jié)果“翻譯”成相應(yīng)的幾何意義。(化為向量問(wèn)題)(進(jìn)行向量運(yùn)
2024-11-12 01:34
【總結(jié)】ZPZ空間“角度”問(wèn)題設(shè)直線,lm的方向向量分別為,abla?mla?mb???若兩直線所成的角為,則,lm(0)2???≤≤cosabab???復(fù)習(xí)引入①方向向量法將二面角轉(zhuǎn)化為二面角的兩個(gè)面的
【總結(jié)】一、復(fù)習(xí)用空間向量解決立體幾何問(wèn)題的“三步曲”。(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問(wèn)題中涉及的點(diǎn)、直線、平面,把立體幾何問(wèn)題轉(zhuǎn)化為向量問(wèn)題;(2)通過(guò)向量運(yùn)算,研究點(diǎn)、直線、平面之間的位置關(guān)系以及它們之間距離和夾角等問(wèn)題;(3)把向量的運(yùn)算結(jié)果“翻譯”成相應(yīng)的幾何意義。(化為向量問(wèn)題)(進(jìn)行向量運(yùn)算)(
2024-11-09 03:30
【總結(jié)】第一篇:向量法在立體幾何中的運(yùn)用 龍?jiān)雌诳W(wǎng)://. 向量法在立體幾何中的運(yùn)用 作者:何代芬 來(lái)源:《中學(xué)生導(dǎo)報(bào)·教學(xué)研究》2013年第27期 摘要:在近幾年的高考中利用向量的模和夾角公式求...
2024-10-21 23:33
【總結(jié)】空間向量在立體幾何中的應(yīng)用【例1】已知三棱錐P-ABC中,PA⊥面ABC,AB⊥AC,PA=AC=AB,N為AB上一點(diǎn),AB=4AN,M,S分別為PB,BC的中點(diǎn).(Ⅰ)證明:CM⊥SN;(Ⅱ)求SN與平面CMN所成角的大小.證明:設(shè)PA=1,以A為原點(diǎn),射線AB,AC,AP分別為x,y,z軸正向建立空間直角坐標(biāo)系如圖.則P(0,0,1),C(0,1,0),B
2025-08-18 16:48