【總結(jié)】立體幾何中探索性問題的向量解法近幾年的高考對新課程增加的新內(nèi)容的考查形式和要求已經(jīng)發(fā)生重大變化,向量、導數(shù)等內(nèi)容已經(jīng)由解決問題的輔助地位上升為分析問題和解決問題時必不可少的工具,成為綜合運用數(shù)學知識、多角度展開解題思路的重要命題素材。高考試卷中立體幾何試題不斷出現(xiàn)了一批具有探究性、開放性的試題,對這些試題的研究不難發(fā)現(xiàn),如果靈活的運用平面向量和空間向量知識來探求這類問題,將是更好的形與數(shù)的結(jié)
2025-09-25 15:35
【總結(jié)】立體幾何中的向量方法—求空間角?立體幾何這一考點在廣東高考試卷中占有很大比例,11年19分12年18分13年24分。這些題目也是我們?nèi)幦×η鬂M分的題目。主要考查三視圖問題,點線面位置關(guān)系問題,還有就是大題.大題主要有垂直、平行、角度、體積。對于角度問題,一直是一個難點。大體有兩種求法,一類是傳統(tǒng)方法,一做(找)二證三求,另一種方
2025-06-16 12:13
【總結(jié)】立體幾何中的探索性問題立體幾何中的探索性問題主要是對平行、垂直關(guān)系的探究,對條件和結(jié)論不完備的開放性問題的探究.這類試題的一般設(shè)問方式是“是否存在?存在給出證明,不存在說明理由”.解決這類試題,一般根據(jù)探索性問題的設(shè)問,首先假設(shè)其存在,然后在這個假設(shè)下進行推理論證,如果通過推理得到了合乎情理的結(jié)論就肯定假設(shè),如果得到了矛盾就否定假設(shè).8如圖,
2025-03-25 06:43
【總結(jié)】空間距離問題(專注高三數(shù)學輔導:QQ1550869062)空間中距離的求法是歷年高考考查的重點,其中以點與點、點到線、點到面的距離為基礎(chǔ),求其他幾種距離一般化歸為這三種距離.●難點磁場(★★★★)如圖,已知ABCD是矩形,AB=a,AD=b,PA⊥平面ABCD,PA=2c,Q是PA的中點.求:(1)Q到BD的距離;(2)P到平面BQ
2025-03-25 06:44
【總結(jié)】專題四立體幾何/1/.ABCDABEFABMACNFBAMFNMNBCE???兩個全等的正方形和所在平面相交于,,,且,求證:平面例()//()()//?解決本題的關(guān)鍵在于找出平面內(nèi)的一條直線
2025-07-18 00:17
【總結(jié)】立體幾何專題之二面角問題北京大學光華管理學院何洋立體幾何高考情況簡述2022年2022年2022年文科理科文科理科文科理科選擇題222222填空題111110解答題111111二面角問題高考情況簡述?除2022年北京
2025-07-20 07:01
【總結(jié)】1用空間向量處理立體幾何的問題立體幾何著重的是研究點、線、面之間的關(guān)系,研究空間三種位置關(guān)系(即空間直線與直線、直線與平面、平面與平面)以及三種角(異面直線所成的角、直線與平面所成的角和二面角)的計算。自上海高考試卷內(nèi)容改革以來,純粹用立體幾何的公理、定理來證明或計算立體幾何問題越來越少,而借助于向量的計算方法來處理立體幾何的問題卻越來越多。本講座就是詳細
2025-08-27 17:12
【總結(jié)】2020年12月19日星期六用空間向量解決立體幾何問題的步驟:(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問題中涉及的點、直線、平面,把立體幾何問題轉(zhuǎn)化為向量問題;(2)通過向量運算,研究點、直線、平面之間的位置關(guān)系以及它們之間距離和夾角等問題;(3)把向量的運算結(jié)果“翻譯”成相應(yīng)的幾何意義。(化為向量問題)(進行向量運
2024-11-12 01:34
【總結(jié)】ZPZ空間“角度”問題設(shè)直線,lm的方向向量分別為,abla?mla?mb???若兩直線所成的角為,則,lm(0)2???≤≤cosabab???復習引入①方向向量法將二面角轉(zhuǎn)化為二面角的兩個面的
2025-08-05 10:54
【總結(jié)】一、復習用空間向量解決立體幾何問題的“三步曲”。(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問題中涉及的點、直線、平面,把立體幾何問題轉(zhuǎn)化為向量問題;(2)通過向量運算,研究點、直線、平面之間的位置關(guān)系以及它們之間距離和夾角等問題;(3)把向量的運算結(jié)果“翻譯”成相應(yīng)的幾何意義。(化為向量問題)(進行向量運算)(
2024-11-09 03:30
【總結(jié)】[備考方向要明了]考什么怎么考.、直線與平面、平面與平面的垂直、平行關(guān)系.(包括三垂線定理).、直線與平面、平面與平面的夾角的計算問題.了解向量方法在研究立體幾何問題中的應(yīng)用.,而平面法向量則多滲透在解答題中考查.、面位置關(guān)系,在高考有所體現(xiàn),如2012年陜西T18,可用向量法證明.,多以解答題形式考查,并且作為解答題的第二種方法考查,
2025-06-25 00:21
【總結(jié)】分類突破題型一、利用向量證明平行與垂直例1如圖所示,已知直三棱柱ABC—A1B1C1中,△ABC為等腰直角三角形,∠BAC=90°,且AB=AA1,D、E、F分別為B1A、
【總結(jié)】空間向量的引入為代數(shù)方法處理立體幾何問題提供了一種重要的工具和方法,解題時,可用定量的計算代替定性的分析,從而回避了一些嚴謹?shù)耐评碚撟C。求空間角與距離是立體幾何的一類重要的問題,也是高考的熱點之一。本節(jié)課主要是討論怎么樣用向量的辦法解決空間角與距離的問題。建立空間直角坐標系,解立體幾何題1122330???abab
2024-11-09 01:53
【總結(jié)】第一篇:向量法在立體幾何中的運用 龍源期刊網(wǎng)://. 向量法在立體幾何中的運用 作者:何代芬 來源:《中學生導報·教學研究》2013年第27期 摘要:在近幾年的高考中利用向量的模和夾角公式求...
2024-10-21 23:33
【總結(jié)】利用空間向量解決立體幾何問題數(shù)學專題二學習提綱二、立體幾何問題的類型及解法1、判斷直線、平面間的位置關(guān)系;(1)直線與直線的位置關(guān)系;(2)直線與平面的位置關(guān)系;(3)平面與平面的位置關(guān)系;2、求解空間中的角度;3、求解空間中的距離。1、直線的方向向量;2、平面的法向量。
2024-11-25 22:52