freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

最新高一數(shù)學(xué)必修一教案反思(十四篇)(編輯修改稿)

2025-08-10 18:13 本頁面
 

【文章內(nèi)容簡介】 a=a,a∩ =,a∩b=b∩aa a∪b,b a∪b,a∪a=a,a∪ =a,a∪b=b∪a若a∩b=a,則a b,反之也成立若a∪b=b,則a b,反之也成立若x∈(a∩b),則x∈a且x∈b若x∈(a∪b),則x∈a,或x∈b高一數(shù)學(xué)必修一教案反思篇五(1)通過實(shí)物操作,增強(qiáng)學(xué)生的直觀感知。(2)能根據(jù)幾何結(jié)構(gòu)特征對(duì)空間物體進(jìn)行分類。(3)會(huì)用語言概述棱柱、棱錐、圓柱、圓錐、棱臺(tái)、圓臺(tái)、球的結(jié)構(gòu)特征。(4)會(huì)表示有關(guān)于幾何體以及柱、錐、臺(tái)的分類。(1)讓學(xué)生通過直觀感受空間物體,從實(shí)物中概括出柱、錐、臺(tái)、球的幾何結(jié)構(gòu)特征。(2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識(shí)。(1)使學(xué)生感受空間幾何體存在于現(xiàn)實(shí)生活周圍,增強(qiáng)學(xué)生學(xué)習(xí)的積極性,同時(shí)提高學(xué)生的觀察能力。(2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺(tái)、球的結(jié)構(gòu)特征。 難點(diǎn):柱、錐、臺(tái)、球的結(jié)構(gòu)特征的概括。(1)學(xué)法:觀察、思考、交流、討論、概括。(2)實(shí)物模型、投影儀 四、教學(xué)思路教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對(duì)學(xué)生的活動(dòng)及時(shí)給予評(píng)價(jià)。所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺(tái)、球結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標(biāo)準(zhǔn)對(duì)這些空間物體進(jìn)行分類嗎?這是我們所要學(xué)習(xí)的內(nèi)容。引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對(duì)物體進(jìn)行分類,分辯棱柱、圓柱、棱錐。觀察棱柱的幾何物件以及投影出棱柱的圖片,它們各自的特點(diǎn)是什么?它們的共同特點(diǎn)是什么?組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。(1)有兩個(gè)面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對(duì)棱柱分類?請列舉身邊具有已學(xué)過的幾何結(jié)構(gòu)特征的物體,并說出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺(tái)的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。讓學(xué)生觀察圓柱,并實(shí)物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺(tái)、球的`結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺(tái)與圓臺(tái)統(tǒng)稱為臺(tái)體,圓錐與棱錐統(tǒng)稱為錐體?,F(xiàn)實(shí)世界中,我們看到的物體大多由具有柱、錐、臺(tái)、球等幾何結(jié)構(gòu)特征的物體組合而成。請列舉身邊具有已學(xué)過的幾何結(jié)構(gòu)特征的物體,并說出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)棱柱的何兩個(gè)平面都可以作為棱柱的底面嗎?課本p8, a組第1題。圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺(tái)可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?棱臺(tái)與棱柱、棱錐有什么關(guān)系?圓臺(tái)與圓柱、圓錐呢?練習(xí):課本p7 練習(xí)2(1)(2) 課本p8 第4題 五、歸納整理由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容 六、布置作業(yè)課本p8 b組第1題課外練習(xí) 課本p8 b組第2題高一數(shù)學(xué)必修一教案反思篇六一、自主學(xué)習(xí)1. 閱讀課本 練習(xí)止.2. 回答問題(1)課本內(nèi)容分成幾個(gè)層次?每個(gè)層次的中心內(nèi)容是什么?(2)層次間的聯(lián)系是什么?(3)對(duì)數(shù)函數(shù)的定義是什么?(4)對(duì)數(shù)函數(shù)與指數(shù)函數(shù)有什么關(guān)系?3. 完成 練習(xí)4. 小結(jié).二、方法指導(dǎo)1. 在學(xué)習(xí)對(duì)數(shù)函數(shù)時(shí),同學(xué)們應(yīng)從熟悉的指數(shù)問題出發(fā),通過對(duì)指數(shù)函數(shù)的認(rèn)識(shí)逐步轉(zhuǎn)化為對(duì)對(duì)數(shù)函數(shù)的認(rèn)識(shí),而且畫對(duì)數(shù)函數(shù)圖象時(shí),既要考慮到對(duì)底數(shù)的分類討論而且對(duì)每一類問題也可以多選幾個(gè)不同的底,畫在同一個(gè)坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).2. 本節(jié)課的主線是對(duì)數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),通過互為反函數(shù)的兩個(gè)函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì)一、提問題1. 對(duì)數(shù)函數(shù)的自變量和函數(shù)分別在指數(shù)函數(shù)中是什么?,則他們的值域,定義域有什么關(guān)系??試舉例說明.二、變題目1. 試求下列函數(shù)的反函數(shù):(1) 。 (2) 。(3) 。 (4) .2. 求下列函數(shù)的定義域:(1) 。 (2) 。 (3) .3. 已知 則 = 。 的定義域?yàn)?.39。有關(guān)概念(1)把函數(shù) 叫做對(duì)數(shù)函數(shù), 叫做對(duì)數(shù)函數(shù)的底數(shù)。(2)以10為底數(shù)的對(duì)數(shù)函數(shù) 為常用對(duì)數(shù)函數(shù)。(3)以無理數(shù) 為底數(shù)的對(duì)數(shù)函數(shù) 為自然對(duì)數(shù)函數(shù).2. 反函數(shù)的概念在指數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 。在對(duì)數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ,像這樣的兩個(gè)函數(shù)叫做互為反函數(shù).3. 與對(duì)數(shù)函數(shù)有關(guān)的定義域的求法:4. 舉例說明如何求反函數(shù).一、課外作業(yè): 習(xí)題35 a組 1,2,3, b組1,二、課外思考:1. 求定義域: .2. 求使函數(shù) 的函數(shù)值恒為負(fù)值的 的取值范圍.高一數(shù)學(xué)必修一教案反思篇七兩角和與差的正弦、余弦、余弦、正切.(3)掌握兩角和與兩角差的正弦、余弦、正切公式。掌握二 、余弦、正切公式.(4)能正確運(yùn)用三角公式,進(jìn)行簡單三角函數(shù)式的化簡、求值和恒等式證明.(一)選擇題(共5題)1.(海南寧夏卷理7) =( )a. b. c. 2 d.解: ,選c。2.(山東卷 理5文10)已知cos(α )+sinα=(a) (b) (c) (d)解: , ,3.(四川卷理3文4) ( )(a) (b) (c) (d)【解】:∵故選d?!军c(diǎn)評(píng)】:此題重點(diǎn)考察各三角函數(shù)的關(guān)系。4.(浙江卷理8)若 則 =( )(a) (b)2 (c) (d)解析:本小題主要考查三角 函數(shù)的求值問題。由 可知, 兩邊同時(shí)除以 得 平方得 ,解得 或用觀察法.5.(四川延考理5)已知 ,則 ( )(a) (b) (c) (d)解: ,選c(二)填空題(共2題)1.(浙江卷文12)若 ,則 _________。解析:本 小題主要考查誘導(dǎo)公式及二倍角公式的應(yīng)用。由 可知, 。而 。答案 :2.(上海春卷6)化簡: .(三)解答題(共1題)1.(上海春卷17)已知 ,求 的 值.[解] 原式 …… 2分. …… 5分又 , , …… 9分. …… 12分 文章高一數(shù)學(xué)必修一教案反思篇八首先談?wù)勎覍?duì)教材的理解,《兩條直線平行與垂直的判定》,本節(jié)課的內(nèi)容是兩條直線平行與垂直的判定的推導(dǎo)及其應(yīng)用,學(xué)生對(duì)于直線平行和垂直的概念已經(jīng)十分熟悉,并且在上節(jié)課學(xué)習(xí)了直線的傾斜角與斜率,為本節(jié)課的學(xué)習(xí)打下了基礎(chǔ)。教材是我們教學(xué)的工具,是載體。但我們的教學(xué)是要面向?qū)W生的,高中學(xué)生本身身心已經(jīng)趨于成熟,管理與教學(xué)難度較大,那么為了能夠成為一個(gè)合格的`高中教師,深入了解所面對(duì)的學(xué)生可以說是必修課。本階段的學(xué)生思維能力已經(jīng)非常成熟,能夠有自己獨(dú)立的思考,所以應(yīng)該積極發(fā)揮這種優(yōu)勢,讓學(xué)生獨(dú)立思考探索。根據(jù)以上對(duì)教材的分析以及對(duì)學(xué)情的把握,我制定了如下三維教學(xué)目標(biāo):(一)知識(shí)與技能掌握兩條直線平行與垂直的判定,能夠根據(jù)其判定兩條直線的位置關(guān)系。(二)過程與方法在經(jīng)歷兩條直線平行與垂直的判定過程中,提升邏輯推理能力。(三)情感態(tài)度價(jià)值觀在猜想論證的過程中,體會(huì)數(shù)學(xué)的嚴(yán)謹(jǐn)性。我認(rèn)為一節(jié)好的數(shù)學(xué)課,從教學(xué)內(nèi)容上說一定要突出重點(diǎn)、突破難點(diǎn)。而教學(xué)重點(diǎn)的確立與我本節(jié)課的內(nèi)容肯定是密不可分的。那么根據(jù)授課內(nèi)容可以確定本
點(diǎn)擊復(fù)制文檔內(nèi)容
合同協(xié)議相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1