【總結】一元二次不等式復習一元二次方程方程有兩個不等的根0??044)2(22????abacabxa(1)公式法X=方程有一個根0??方程沒有根0??求根的方法:(2)配方法,化為頂點式(3)十字相乘法復習一元二次方程:ax2+bx+c=0(a≠0)的根例:求0322???xx
2024-11-18 00:48
【總結】課題:不等式專題復習班級:姓名:學號:第學習小組【學習目標】會運用基本不等式解決一些問題.【課前預習】1、(1)函數(shù)2231xxy???的定義域為_________________;(2)比較大小:122?____________
2024-12-05 10:13
【總結】課題:基本不等式(1)班級:姓名:學號:第學習小組【學習目標】理解算術平均數(shù)與幾何平均數(shù)的定義及它們的關系.探究并了解基本不等式的證明過程,會用各種方法證明基本不等式.理解基本不等式的意義,并掌握基本不等式中取等號的條件是:當且僅當這兩個數(shù)相等.【課前預習】1.當
2024-11-20 01:04
【總結】第8課時二元一次不等式(組)與平面區(qū)域,提高數(shù)學建模的能力.,會作出二元一次不等式(組)表示的平面區(qū)域.(組)所表示的平面區(qū)域解決簡單的實際問題.如圖,點P1(-1,0)與點P2(0,-1)都在直線上,都滿足x+y+1=0,點P3(0,0)與點P4(1,1)都在
2024-11-18 08:09
【總結】【成才之路】2021年春高中數(shù)學第3章不等式綜合測試北師大版必修5(時間:120分鐘滿分:150分)第Ⅰ卷(選擇題共60分)一、選擇題(本大題共12個小題,每小題5分,共60分,每小題有4個選項,其中有且僅有一個是正確的,把正確的選項填在答題卡中)1.若1a1b0,則下列不等式:
2024-11-28 17:46
【總結】第8課時等比數(shù)列的應用、通項公式、前n項和公式的性質.、通項公式、前n項和公式的性質解決相關的數(shù)列問題.前面我們共同學習了等比數(shù)列的定義、通項公式、前n項和公式等基本概念,理解了累差法、歸納法、倒序相加法等,今天我們將共同探究等比數(shù)列的定義,通項公式,前n項和公式的相關性質及其應用,這些性質在數(shù)列中地
2024-12-08 02:37
【總結】不等式復習學案班級學號姓名【課前預習】x的不等式2240mxx???的解集為??12xx???,則實數(shù)m的值為.2.設集合??2340,AxxxxR?
2024-11-20 01:07
【總結】第5課時等差數(shù)列的應用、通項公式、前n項和公式的性質.、通項公式、前n項和公式的性質解決相關的數(shù)列問題.前面我們共同學習了等差數(shù)列的定義、通項公式、前n項和公式等基本概念,理解了累加法、歸納法、倒序相加法等,今天我們將共同探究等差數(shù)列的定義、通項公式、前n項和公式的相關性質及其應用,這些性質在數(shù)列中有著重要
【總結】陜西省咸陽市涇陽縣云陽中學高中數(shù)學(組)與平面區(qū)域導學案北師大版必修5【學習目標】,能畫出二元一次不等式(組)所表示的圖形;2.感受由圖形解決數(shù)學問題的直觀性,從而體會數(shù)形結合的數(shù)學思想?!緦W習重點】正確畫二元一次不等式(組)所表示的平面區(qū)域?!緦W法指導】“數(shù)形結合法”來研究問題。【使用說明】
2024-11-19 15:46
【總結】第9課時簡單的線性規(guī)劃問題、目標函數(shù)、可行解、可行域、最優(yōu)解等基本概念.,并能應用它解決一些簡單的實際問題..世界杯冠軍意大利足球隊營養(yǎng)師布拉加經常遇到這樣一類營養(yǎng)調配問題:甲、乙、丙三種食物的維生素A、B的含量及成本如下表:甲乙丙維生素A(單位/千克)40060040
【總結】基本不等式與最大(小)值課時目標;(小)值問題.1.設x,y為正實數(shù)(1)若x+y=s(和s為定值),則當______時,積xy有最____值,且這個值為________.(2)若xy=p(積p為定值),則當______時,和x+y有最____值,且這個值為______.
2024-12-05 06:35
【總結】不等關系與不等式1.甲、乙兩人同時從A到B.甲一半路程步行,一半路程跑步;乙一半時間步行,一半時間跑步.如果兩人步行速度、跑步速度均相同,則()A.甲先到BB.乙先到BC.兩人同時到BD.誰先到無法確定2.設,不等式能成立的個數(shù)為()A.0B.1C.
2024-12-03 03:12
【總結】陜西省吳堡縣吳堡中學高中數(shù)學第三章不等關系與不等式1典型例題素材北師大版必修5【例1】已知a|b|;(4)a2b2;(5);(6).【例2】設f(x)=ax2+bx且1≤f(-1)≤2,2≤f(1)≤
【總結】雙基限時練(二十六)一、選擇題1.設變量x,y滿足約束條件?????x≥0,y≥0,x+y≤1,則目標函數(shù)z=x+2y的最大值為()A.0B.1C.2D.3解析不等式組表示的平面區(qū)域如圖所示,當z=x+2y過(0,1)時z取得最大值2.答案C
2024-12-04 20:39
【總結】雙基限時練(二十)一、選擇題1.不等式-6x2-x+2≤0的解集為()A.{x|-23≤x≤12}B.{x|x≤-23,或x≥12}C.{x|x≥12}D.{x|x≤-23}解析由-6x2-x+2≤0,得6x2+x-2≥0,x≥12或x≤-23.答案B2.
2024-12-04 23:46