【總結】1.2余弦定理△ABC中,已知邊a,b及∠C.1.若∠C=90°,則c2=a2+b2.2.若∠C是銳角,如左下圖,作AD⊥BC于點D,于是AD=b·sinC,CD=b·cos_C,BD=a-bcos_C.3.若∠C為鈍角,如右上圖,作
2024-12-05 10:14
【總結】余弦定理(二)課時目標、余弦定理;、余弦定理解三角形的有關問題.1.正弦定理及其變形(1)asinA=bsinB=csinC=______.(2)a=__________,b=__________,c=__________.(3)sinA=__________,sinB=__________,
【總結】余弦定理(二)自主學習知識梳理1.在△ABC中,邊a、b、c所對的角分別為A、B、C,則有:(1)A+B+C=________,A+B2=____________.(2)sin(A+B)=__________,cos(A+B)=__________,tan(A+B)=_______
2024-11-19 23:20
【總結】余弦定理課件:在任一個三角形中,各邊和它所對角的正弦比相等,即===2R(R為△ABC外接圓半徑)AasinBbsinCcsin:從理論上正弦定理可解決兩類問題:1.兩角和任意一邊,求其它兩邊和一角;2.兩邊和其中一邊對角,求另一邊的
2024-11-18 12:09
【總結】余弦定理(一)自主學習知識梳理1.余弦定理三角形中任何一邊的________等于其他兩邊的________的和減去這兩邊與它們的______的余弦的積的________.即a2=___________________,b2=__________________,c2=________________.2.余弦定
2024-12-05 06:38
【總結】陜西省咸陽市涇陽縣云陽中學高中數(shù)學北師大版必修5【學習目標】1.能根據(jù)正弦定理判斷三角形的形狀2.會對正弦定理與三角形外接圓半徑的關系簡單進行應用3.能對三角形面積定理進行應用【學習重點】正弦定理與三角形外接圓半徑的關系簡單進行應用三角形面積定理的應用【使用說明】[A
2024-11-27 22:09
【總結】第5課時基本不等式,能借助幾何圖形說明基本不等式的意義.(小)值.“一正二定三相等”.如圖是在北京召開的第24界國際數(shù)學家大會的會標,會標是根據(jù)中國古代數(shù)學家趙爽的弦圖設計的,顏色的明暗使它看上去像一個風車,代表中國人民熱情好客.在正方形ABCD中有4個全等的直角三角形,設直角三
2024-12-08 02:37
【總結】第2課時不等式的性質(zhì)..建筑設計規(guī)定,民用住宅的窗戶面積必須小于地板面積.但按采光標準,窗戶面積與地板面積的比值應不小于10%,且這個比值越大,住宅的采光條件越好.試問:同時增加相等的窗戶面積和地板面積,住宅的采光條件是變好了,還是變壞了?請說明理由.問題1:在上述情境中假設原住
【總結】ABC中,a2b2+c2,則A的取值范圍是()A.90°A180°B.45°A90°C.60°A90°D.0°A90°解析:∵a2=b2+c2-
2024-12-03 00:11
【總結】正弦定理、余弦定理的應用學案班級學號姓名一一、、學學習習目目標標1.會在各種應用問題中,抽象成三角形,標出已知量、未知量,確定三角形的方法;2.搞清利用解斜三角形可解決的各類應用題的基本圖形和基本等量關系;3.理解各種應用問題中的有關名詞、術語,如度、俯角、
2024-11-19 19:08
【總結】正余弦定理常見解題類型1.解三角形正弦定理常用于解決以下兩類解斜三角形的問題:①已知兩角和任一邊,求其他兩邊和一角;②已知兩邊和其中一邊的對角,求另一邊的對角及其他的邊和角.余弦定理常用于解決以下兩類解斜三角形的問題:①已知三邊,求三個角;②已知兩邊和它們的夾角,求第三邊和其他兩個角.例1已知在ABC△中,4526Aac??
2024-11-19 08:01
【總結】正余弦定理的應用1、角的關系2、邊的關系3、邊角關系?180???CBAcbacba????,大角對大邊大邊對大角三角形中的邊角關系RCcBbAa2sinsinsin???CabbacBaccabAbccbacos2cos2cos2222222
2024-11-18 08:48
【總結】正弦定理、余弦定理及其運用?一、考綱解讀?二、正弦定理及其變形?三、余弦定理及其變形?四、實際應用問題中的基本概念和術語?五、例題講解?六、高考題再現(xiàn)?七、小結本節(jié)課內(nèi)容目錄:一、考綱解讀:在課標及《教學要求》中對正弦定理、余弦定理的要求均為理解(B)。在高考試題中
2024-11-17 23:32
【總結】正、余弦定理綜合應用(1)實際問題抽象概括示意圖數(shù)學模型推理演算數(shù)學模型的解實際問題的解還原說明實際問題應用模型問題1.怎樣測量一個底部不能到達的建筑物的高度?如圖,在北京故宮的四個角上各矗立著一座角樓,如何通過測量,求得角樓的高度?
【總結】1.3正弦定理、余弦定理的應用學習目標預習導學典例精析欄目鏈接情景導入2020年10月12日,中國宣布了自己的探月計劃:中國將在2020年把“嫦娥一號”繞月衛(wèi)星送入太空,2020年實現(xiàn)發(fā)射軟著陸器登陸月球.路透社報道:中國將在2024年把人送上月球.
2024-11-18 08:11