【總結(jié)】立體幾何大題練習(xí)(文科):1.如圖,在四棱錐S﹣ABCD中,底面ABCD是梯形,AB∥DC,∠ABC=90°,AD=SD,BC=CD=,側(cè)面SAD⊥底面ABCD.(1)求證:平面SBD⊥平面SAD;(2)若∠SDA=120°,且三棱錐S﹣BCD的體積為,求側(cè)面△SAB的面積.【分析】(1)由梯形ABCD,設(shè)BC=a,則CD=a,AB=2a,運(yùn)用勾股定理
2025-03-25 06:44
【總結(jié)】高考文科數(shù)學(xué)立體幾何大題題型基本平行、垂直證明.(2013年高考北京卷(文))如圖,在四棱錐中,,,,平面底面,,和分別是和的中點(diǎn),求證:(1)底面;(2)平面;(3)平面平面【答案】(I)因?yàn)槠矫鍼AD⊥平面ABCD,且PA垂直于這個(gè)平面的交線AD所以PA垂直底面ABCD.(II)因?yàn)锳B∥CD,CD=2AB,E為CD的中點(diǎn)所以AB∥DE,且AB=DE
2025-03-25 03:14
【總結(jié)】立體幾何知識(shí)點(diǎn)整理(文科)一.直線和平面的三種位置關(guān)系:1.線面平行符號(hào)表示:2.線面相交符號(hào)表示:3.線在面內(nèi)符號(hào)表示:二.平行關(guān)系:1.線線平行:方法一:用線面平行實(shí)現(xiàn)。方法二:用面面平行實(shí)現(xiàn)。方法三:用線面垂直實(shí)現(xiàn)。若,則。方法四:用向量
2025-04-04 05:17
【總結(jié)】2012高考數(shù)學(xué)試題(全國(guó)卷)解析一.選擇題:(共12個(gè)小題,每小題5分,滿分60分)1.復(fù)數(shù)=(A)2+i (B)2-i (C)1+2i (D)1-2i選(C)【解法一】:分母實(shí)數(shù)化后,直接得結(jié)果.【解法二】:在復(fù)平面內(nèi)畫出-1+3i和1+i對(duì)應(yīng)的向量,易知兩向量的夾角大于45o小于90o,四個(gè)選項(xiàng)中只有(C)滿足。={1,3
2025-01-14 22:22
【總結(jié)】試卷第1頁(yè),總25頁(yè)????○????外????○????裝????○????訂????○????線????○????學(xué)校:___________姓名:___________班級(jí):___________考號(hào):___________????○????
2025-01-09 15:44
【總結(jié)】清華北大家教中心(),清華、北大校內(nèi)勤工儉學(xué)機(jī)構(gòu),提供1對(duì)1上門家教家教熱線:【010-62561255—62610662】,專業(yè)打造北京第一家教品牌,北京最值得信賴家教機(jī)構(gòu)!2022年高考數(shù)學(xué)試題分類匯編——集合與邏輯(2022年北京卷1)已知全集U?R,集合??|23Axx??≤≤,??|14Bxxx??
2025-01-09 16:30
【總結(jié)】2013年全國(guó)各地高考文科數(shù)學(xué)試題分類匯編7:立體幾何一、選擇題.(2013年高考重慶卷(文))某幾何體的三視圖如題(8)所示,則該幾何體的表面積為 ( ?。〢. B. C. D.【答案】D.(2013年高考課標(biāo)Ⅱ卷(文))一個(gè)四面體的頂點(diǎn)在空間直角坐標(biāo)系中的坐標(biāo)分別是,畫該四面體三視圖中的正視圖時(shí),以平面為投影面,則得到正視圖可以為
2025-08-08 23:26
【總結(jié)】中國(guó)最大的管理資源中心(大量免費(fèi)資源共享)第1頁(yè)共8頁(yè)
2025-07-13 20:16
【總結(jié)】-1-目錄(基礎(chǔ)復(fù)習(xí)部分)第十章立體幾何.................................................................................................................................................2第57課平面的基本性質(zhì)與空間兩條直線的位
2025-01-18 07:17
【總結(jié)】高考立體幾何大題及答案1.(2009全國(guó)卷Ⅰ文)如圖,四棱錐中,底面為矩形,底面,,,點(diǎn)在側(cè)棱上,。(I)證明:是側(cè)棱的中點(diǎn);求二面角的大小。2.(2009全國(guó)卷Ⅱ文)如圖,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分別為AA1、B1C的中點(diǎn),DE⊥平面BCC1(Ⅰ)證明:AB=AC(Ⅱ)設(shè)二面
2025-06-26 05:02
【總結(jié)】高考立體幾何大題及答案1.(2009全國(guó)卷Ⅰ文)如圖,四棱錐中,底面為矩形,底面,,,點(diǎn)在側(cè)棱上,。(I)證明:是側(cè)棱的中點(diǎn);求二面角的大小。2.(2009全國(guó)卷Ⅱ文)如圖,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分別為AA1、B1C的中點(diǎn),DE⊥平面BCC1(Ⅰ)證明:AB=AC(Ⅱ)設(shè)
2025-06-26 04:58
【總結(jié)】第1頁(yè)共8頁(yè)立體幾何(文)一、知識(shí)要點(diǎn):1、能識(shí)別三視圖所表示的空間幾何體;了解球、棱柱、棱錐、臺(tái)的表面積和體積的計(jì)算公式(不要求記憶公式)。2、理解空間直線、平面位置關(guān)系的定義,并了解如下可以作為推理依據(jù)的公理和定理:◆公理1:如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),這條直線上所有的點(diǎn)在此平面內(nèi).◆公理2:過不在
2024-11-02 19:39
【總結(jié)】高三文科數(shù)學(xué)立體幾何翻折問題,AB=3,DC=1,∠BAD=45°,DE⊥AB(如圖1).現(xiàn)將△ADE沿DE折起,使得AE⊥EB(如圖2),連結(jié)AC,AB,設(shè)M是AB的中點(diǎn).(1)求證:BC⊥平面AEC;(2)判斷直線EM是否平行于平面ACD,并說明理由.
2025-04-04 05:03
【總結(jié)】空間幾何體題型與方法歸納(文科)考點(diǎn)一證明空間線面平行與垂直1、如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,點(diǎn)D是AB的中點(diǎn),(I)求證:AC⊥BC1;(II)求證:AC1//平面CDB1;解析:(1)證明線線垂直方法有兩類:一是通過三垂線定理或逆定理證明,二是通過線面垂直來證明線線垂直;(2)證明線面平行也有兩類:一是通過
2025-03-24 03:55
【總結(jié)】立體幾何(文)一、知識(shí)要點(diǎn):1、能識(shí)別三視圖所表示的空間幾何體;了解球、棱柱、棱錐、臺(tái)的表面積和體積的計(jì)算公式(不要求記憶公式)。2、理解空間直線、平面位置關(guān)系的定義,并了解如下可以作為推理依據(jù)的公理和定理:◆公理1:如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),這條直線上所有的點(diǎn)在此平面內(nèi).◆公理2:過不在同一條直線上的三點(diǎn),有且只有一個(gè)平面(三個(gè)推論).◆公理3:如果兩個(gè)
2025-08-09 16:48