【總結】高三數(shù)學下學期模擬試題之立體幾何-----------------------作者:-----------------------日期:n更多企業(yè)學院:《中小企業(yè)管理全能版》183套講座+89700份資料《總經(jīng)理、高層管理》49套講座+16388份資料《中層管理學院》46套講座+
2025-04-04 05:02
【總結】第一篇:立體幾何證明問題 證明問題 ,E、F分別是長方體邊形 .-的棱A、C的中點,求證:四邊形是平行四 ,ABCD為正方形,SA⊥平面ABCD,過點A且垂直于SC的平面分別交SB、SC、SD...
2024-10-14 10:12
【總結】俯視圖正(主)視圖側(cè)(左)視圖2322萬全高中高三數(shù)學(文)同步練習(23)---立體幾何一、選擇題1、右圖是一個幾何體的三視圖,根據(jù)圖中數(shù)據(jù),()可得該幾何體的表面積是()A. B. C. D.2、已知α,β是平面,m,() A.若m∥n,m⊥α,則n⊥
2025-06-07 19:13
【總結】立體幾何體積問題1、在如圖所示的五面體中,四邊形為菱形,且,平面,,為中點.(1)求證平面;(2)若平面平面,求到平面的距離.【答案】(1)見解析;(2)試題解析(2)由(1)得平面,所以到平面的距離等于到平面的距離.取的中點,連接,因為四邊形為菱形,且,,所以,,因為平面平面,平面平面,所以平面,,因為,所以,學
2025-03-25 06:43
【總結】證明題之旋轉(zhuǎn)平移折疊1.在平面直角坐標系中,已知點A(﹣2,0),點B(0,4),點E在OB上,且∠OAE=∠0BA.(Ⅰ)如圖①,求點E的坐標;(Ⅱ)如圖②,將△AEO沿x軸向右平移得到△A′E′O′,連接A′B、BE′.①設AA′=m,其中0<m<2,試用含m的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值時點E′的坐標;②當A′B+BE′
2025-03-24 12:33
【總結】高考立體幾何大題及答案1.(2009全國卷Ⅰ文)如圖,四棱錐中,底面為矩形,底面,,,點在側(cè)棱上,。(I)證明:是側(cè)棱的中點;求二面角的大小。2.(2009全國卷Ⅱ文)如圖,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分別為AA1、B1C的中點,DE⊥平面BCC1(Ⅰ)證明:AB=AC(Ⅱ)設二面
2025-06-26 05:02
【總結】高考立體幾何大題及答案1.(2009全國卷Ⅰ文)如圖,四棱錐中,底面為矩形,底面,,,點在側(cè)棱上,。(I)證明:是側(cè)棱的中點;求二面角的大小。2.(2009全國卷Ⅱ文)如圖,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分別為AA1、B1C的中點,DE⊥平面BCC1(Ⅰ)證明:AB=AC(Ⅱ)設
2025-06-26 04:58
【總結】2020-2020年普通高等學校招生新課標全國卷文科數(shù)學題集1全國卷文科數(shù)學試題集(6)——立體幾何1.(2020全國卷)8.已知某個幾何體的三視圖如下,根據(jù)圖中標出的尺寸(單位:cm),可得這個幾何體的體積是()A.34000cm3B.38000cm3C.32020cmD.3400
2024-11-02 10:22
【總結】廣東高考文科數(shù)學真題模擬匯編13:立體幾何1.(2009廣州一模文數(shù))一個幾何體的三視圖及其尺寸(單位:cm)如圖3所示,則該幾何體的側(cè)面積為cm.圖1俯視圖22正(主)視圖222側(cè)(左)視圖2221.2.(2011廣州一模文數(shù))一空間幾何體的三
2025-08-09 09:18
【總結】高考立體幾何中直線、平面之間的位置關系知識點總結(文科)一.平行問題(一)線線平行:方法一:常用初中方法(1中位線定理;2平行四邊形定理;3三角形中對應邊成比例;4同位角、內(nèi)錯角、同旁內(nèi)角)方法二:1線面平行線線平行方法三:2面面平行線線平行方法四:3線面垂直線線平行若,則。(二)線面平行:方法一:4線線平行線面平行方法二:5面面
2025-04-04 05:17
【總結】空間幾何體題型與方法歸納(文科)考點一證明空間線面平行與垂直1、如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,點D是AB的中點,(I)求證:AC⊥BC1;(II)求證:AC1//平面CDB1;解析:(1)證明線線垂直方法有兩類:一是通過三垂線定理或逆定理證明,二是通過線面垂直來證明線線垂直;(2)證明線面平行也有兩類:一是通過
2025-03-24 03:55
【總結】三視圖問題分類解答例1、概念問題1、下列幾何體各自的三視圖中,有且僅有兩個視圖相同的是.(填序號)2、如圖,折線表示嵌在玻璃正方體內(nèi)的一根鐵絲,請把它的三視圖補充完整.3、已知某個幾何體的三視圖如下圖所示,試根據(jù)圖中所標出的尺寸(單位:㎝),可得這個幾何體的體積是.4、已知某個幾何體的三視圖如下圖所示,試根據(jù)圖中
2025-06-07 21:09
【總結】第一篇:立體幾何線面平行問題 線線問題及線面平行問題 一、知識點11)相交——有且只有一個公共點;(2)平行——在同一平面內(nèi),沒有公共點;(3)異面——不在任何一個平面內(nèi),沒有公共點;.. :推...
2024-11-09 12:02
【總結】空間距離問題(專注高三數(shù)學輔導:QQ1550869062)空間中距離的求法是歷年高考考查的重點,其中以點與點、點到線、點到面的距離為基礎,求其他幾種距離一般化歸為這三種距離.●難點磁場(★★★★)如圖,已知ABCD是矩形,AB=a,AD=b,PA⊥平面ABCD,PA=2c,Q是PA的中點.求:(1)Q到BD的距離;(2)P到平面BQ
2025-03-25 06:44
【總結】濟南市第一中學2010年12月階段考試高三數(shù)學試題(文科)一.選擇題:本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的.,集合,,則集合B= A. B. C. D. 3.已知點在第三象限,則角的終邊在 A.第一象限 B.第二象限 C.第三象限D(zhuǎn).第四
2025-01-14 04:52