【總結(jié)】第1頁第2頁第3頁第4頁第5頁第6頁第7頁第8頁第9頁第10頁第11頁第12頁第13頁第14頁第15頁第16頁第17頁第18頁第19頁第20頁第21頁第22頁第23頁
2025-03-22 04:31
【總結(jié)】回顧曲邊梯形求面積的問題??badxxfA)(第八節(jié)定積分的幾何應(yīng)用曲邊梯形由連續(xù)曲線)(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成。abxyo)(xfy?abxyo)(xfy?提示若用A?表示任一小區(qū)間],[xx
2025-04-21 04:48
【總結(jié)】設(shè)函數(shù))(xu、)(xv在區(qū)間??ba,上具有連續(xù)導(dǎo)數(shù),則有????bababavduuvudv.定積分的分部積分公式推導(dǎo)??,vuvuuv?????,)(babauvdxuv???,??????bababadxvudxvuuv.?????bababavduuvud
2025-04-21 05:00
【總結(jié)】calculus§定積分基本積分方法301sinsinxxdx???例:求32sinsinsinsinsincosxxxxxx????解:由于被積函數(shù)(1)一、直接積分法cossin,02cossin,2xxxxxx
2025-01-19 21:34
【總結(jié)】返回后頁前頁二、無窮小量階的比較§5無窮大量與無窮小量由于等同于因0lim[()]0,xxfxA???0lim()xxfxA??分析”.相同的.所以有人把“數(shù)學(xué)分析
2025-08-11 12:13
【總結(jié)】定義1設(shè)函數(shù))(xf在區(qū)間),[??a上連續(xù),取ab?,如果極限????babdxxf)(lim存在,則稱此極限為函數(shù))(xf在無窮區(qū)間),[??a上的廣義積分,記作???adxxf)(.???adxxf)(?????babdxxf)(lim當(dāng)極限存在時,稱廣義積分收斂;當(dāng)極限不存
2025-09-20 19:21
【總結(jié)】第一節(jié)導(dǎo)數(shù)的概念一、導(dǎo)數(shù)概念的引出1.變速直線運動的速度設(shè)描述質(zhì)點運動位置的函數(shù)為0t則到的平均速度為00)()(tttstsv???而在時刻的瞬時速度為00)()(lim0tttstsvtt????221tg
2025-04-21 05:05
【總結(jié)】§函數(shù)極限對于函數(shù)y=?(x),考察它的極限,考察自變量x在定義域內(nèi)變化時,相應(yīng)的函數(shù)值的變化趨勢。;x???;x???;x??0;xx??0;xx??0;xx?種極限過程統(tǒng)一表示用記號6Xx?,下定義:如果在極限過程Xx?無限趨于)(xf,時當(dāng)則稱Xx?,)(
2025-01-20 05:31
【總結(jié)】微積分rxdtdx?微積分微積分第二章極限與連續(xù)?數(shù)列的極限?函數(shù)的極限?變量的極限?無窮大量與無窮小量?極限的運算法則?兩個重要的極限?函數(shù)的連續(xù)性微積分函數(shù)極限微積分.sin時的變化趨勢當(dāng)觀察函數(shù)??xxx播放1.自變量
2025-10-10 18:07
【總結(jié)】一、六個基本積分二、待定系數(shù)法舉例三、小結(jié)第四節(jié)有理函數(shù)的積分有理函數(shù)的定義:兩個多項式的商表示的函數(shù)稱之為有理函數(shù).mmmmnnnnbxbxbxbaxaxaxaxQxP?????????????11101110)()(??其中m、n
2025-08-21 12:39
【總結(jié)】一、問題的提出二、定積分的定義三、存在定理四、幾何意義五、小結(jié)思考題第一節(jié)定積分的概念abxyo??A曲邊梯形由連續(xù)曲線實例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.一、問題的提出)(xfy?ab
2025-08-21 12:42
【總結(jié)】旋轉(zhuǎn)體就是由一個平面圖形繞這平面內(nèi)一條直線旋轉(zhuǎn)一周而成的立體.這直線叫做旋轉(zhuǎn)軸.圓柱圓錐圓臺二、體積1.旋轉(zhuǎn)體的體積一般地,如果旋轉(zhuǎn)體是由連續(xù)曲線)(xfy?、直線ax?、bx?及x軸所圍成的曲邊梯形繞x軸旋轉(zhuǎn)一周而成的立體,體積為多少?取積分變量為x,],[bax?在],[
2025-04-21 03:33
【總結(jié)】2022/4/14寧德師范高等??茖W(xué)校1微積分的創(chuàng)立林壽2022/4/14寧德師范高等??茖W(xué)校2——牛頓時代微積分的創(chuàng)立人類數(shù)學(xué)最偉大的發(fā)明近代始于對古典時代的復(fù)興,但人們很快看到,它遠不是一場復(fù)興,而是一個嶄新的時代。2022/4/14寧德師范高等??茖W(xué)校3?科學(xué)思想
2025-04-13 23:38
【總結(jié)】微積分Ⅰ1第九章重積分§二重積分的計算一、利用直角坐標計算二重積分二、利用極坐標計算二重積分三、小結(jié)微積分Ⅰ2第九章重積分一、利用直角坐標計算二重積分bxa??),()(21xyx????)(2xy??abD)(1xy??Dba)(2x
【總結(jié)】第五講Ⅰ授課題目:§;§。Ⅱ教學(xué)目的與要求:1、理解無窮大與無窮小的概念,弄清無窮大與無窮小的關(guān)系;2、掌握極限的運算法則。Ⅲ教學(xué)重點與難點:1、無窮大與無窮小的概念、相互關(guān)系;2、用極限的運算法則求極限。Ⅳ講授內(nèi)容:§一、無窮大的概念:引例:討論函數(shù),當(dāng)時的變化趨勢。當(dāng)時,越來越大(任意大)
2025-05-16 06:48