【總結(jié)】一、多元復(fù)合函數(shù)求導(dǎo)法則二、小結(jié)思考題第四節(jié)多元復(fù)合函數(shù)的求導(dǎo)法則一、多元復(fù)合函數(shù)的求導(dǎo)法則在一元函數(shù)微分學(xué)中,復(fù)合函數(shù)的求導(dǎo)法則起著重要的作用.現(xiàn)在我們把它推廣到多元復(fù)合函數(shù)的情形.下面按照多元復(fù)合函數(shù)不同的復(fù)合情形,分三種情況進(jìn)行討論.定理1如果函數(shù))(tu?
2025-08-21 12:43
【總結(jié)】abxyo??A曲邊梯形由連續(xù)曲線實(shí)例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.第五節(jié)定積分一、問(wèn)題的提出)(xfy?abxyoabxyo用矩形面積近似取代曲邊梯形面積顯然,小矩形越多,矩形總面
2025-07-22 11:11
【總結(jié)】定義1設(shè)函數(shù))(xf在區(qū)間),[??a上連續(xù),且)()(xfxF??,如果極限????babdxxf)(lim存在,則稱此極限為函數(shù))(xf在無(wú)窮區(qū)間),[??a上的反常積分,記作???adxxf)(.???adxxf)(?????babdxxf)(lim當(dāng)極限存在
2025-07-22 11:10
【總結(jié)】第六章多元函數(shù)微積分教學(xué)重點(diǎn):本章重點(diǎn)講授多元函數(shù)的基本概念、偏導(dǎo)、全微分、復(fù)合函數(shù)微分法與隱函數(shù)微分法、多元函數(shù)的極值及其求法、二重積分的計(jì)算。教學(xué)難點(diǎn):本章難點(diǎn)為復(fù)合函數(shù)微分法與隱函數(shù)微分法、多元函數(shù)極值的求法、二重積分的計(jì)算。教學(xué)內(nèi)容:在前面幾章中,我們討論的函數(shù)都只有一個(gè)自變量,這種函數(shù)稱為一元函數(shù).但在許多實(shí)際問(wèn)題中,我們往往要考
2025-08-21 19:47
【總結(jié)】微積分的名稱?Calculus一詞是源自拉丁文,原意是指石子。因?yàn)楣艢W洲人喜歡用石子來(lái)幫助計(jì)算,所以calculus被引申作計(jì)算的意思。?現(xiàn)時(shí)醫(yī)學(xué)上仍用calculus一詞代表石子。例:acalculousman不是指一位精通微積分的人,而是一位患腎結(jié)石的病人!?微積分這個(gè)中文詞,最早見(jiàn)諸清代數(shù)學(xué)家李善蘭和英國(guó)
2025-09-20 08:13
【總結(jié)】聊聊天微積分的產(chǎn)生——17、18、19世紀(jì)的微積分.很久很久以前,在很遠(yuǎn)很遠(yuǎn)的一塊古老的土地上,有一群智者……開(kāi)普勒、笛卡爾、卡瓦列里、費(fèi)馬、帕斯卡、格雷戈里、羅伯瓦爾、惠更斯、巴羅、瓦里斯、牛頓、萊布尼茨、…….任何研究工作的開(kāi)端,幾乎都是極不完美的嘗試,
2025-08-01 15:02
【總結(jié)】一、問(wèn)題的提出二、積分上限函數(shù)及其導(dǎo)數(shù)三、牛頓-萊布尼茨公式四、小結(jié)思考題第三節(jié)微積分基本公式變速直線運(yùn)動(dòng)中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運(yùn)動(dòng)中路程為21()dTTvtt?設(shè)某物體作直線運(yùn)動(dòng),已知速度)(tvv?是時(shí)間間隔],[21TT上t的一個(gè)連續(xù)函數(shù),且0)(?tv
2025-08-11 08:39
【總結(jié)】第四節(jié)基本初等函數(shù)與初等函數(shù)一、冪函數(shù)二、指數(shù)函數(shù)與對(duì)數(shù)函數(shù)三、三角函數(shù)與反三角函數(shù)四、初等函數(shù)五、小結(jié)思考題一、冪函數(shù)(powerfunctions)冪函數(shù))(是常數(shù)???xyoxy)1,1(112xy?xy?xy1?xy?xay?xay)1(?)
【總結(jié)】第二章微積分的直接基礎(chǔ)——極限第一節(jié)數(shù)列極限主要內(nèi)容:數(shù)列及數(shù)列極限的概念早在兩千多年前,人們從生活、生產(chǎn)實(shí)際中產(chǎn)生了樸素的極限思想,公元前3世紀(jì),我國(guó)的莊子就有“一尺之棰,日取其半,萬(wàn)世不竭”的名言.17世紀(jì)上半葉法國(guó)數(shù)學(xué)家笛卡兒(Descartes)創(chuàng)建解析幾何之后,變量就進(jìn)入了數(shù)學(xué).隨之牛頓
2025-01-13 19:09
【總結(jié)】回顧曲邊梯形求面積的問(wèn)題??badxxfA)(第八節(jié)定積分的幾何應(yīng)用曲邊梯形由連續(xù)曲線)(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成。abxyo)(xfy?abxyo)(xfy?提示若用A?表示任一小區(qū)間],[xx
2025-04-21 04:48
【總結(jié)】第六節(jié)經(jīng)濟(jì)學(xué)中的常用函數(shù)一、需求函數(shù)如果價(jià)格是決定需求量的最主要因素,可以認(rèn)為Q是P的函數(shù)。記作)(PfQ?則f稱為需求函數(shù).需求的含義:消費(fèi)者在某一特定的時(shí)期內(nèi),在一定的價(jià)格條件下對(duì)某種商品具有購(gòu)買力的需要.,bPaQ??線性需求函數(shù):常見(jiàn)的需求函數(shù):2cPbPaQ???二次
2025-08-11 11:12
【總結(jié)】一復(fù)習(xí)引入,提出問(wèn)題回憶當(dāng)x→∞、x→+∞、x→-∞時(shí)的函數(shù)極限是如何定義的.我們可否用類似的思想和方法研究x→x0時(shí)的函數(shù)極限.◆定義1:一般地,當(dāng)自變量x取正值并無(wú)限增大時(shí),函數(shù)f(x)的值無(wú)限趨近于一個(gè)常數(shù)a,就說(shuō)當(dāng)x趨向于正無(wú)窮大時(shí),函數(shù)f(x)的極限是a.記作:記
2025-10-28 14:59
【總結(jié)】隱函數(shù)的求導(dǎo)法則一、一個(gè)方程的情形二、方程組的情形一、一個(gè)方程的情形0),(.1?yxF定義:).(0),(,,0),(,xyyyxFyxyxFyx???隱函數(shù)在該區(qū)間內(nèi)確定了一個(gè)稱方程此時(shí)值與之對(duì)應(yīng)相應(yīng)地總有唯一的時(shí)取某一區(qū)間的任一值在一定條件下,當(dāng),滿足方
2025-01-20 05:31
【總結(jié)】設(shè)函數(shù))(xu、)(xv在區(qū)間??ba,上具有連續(xù)導(dǎo)數(shù),則有????bababavduuvudv.定積分的分部積分公式推導(dǎo)??,vuvuuv?????,)(babauvdxuv???,??????bababadxvudxvuuv.?????bababavduuvud
2025-04-21 05:00
【總結(jié)】一復(fù)習(xí)引入,提出問(wèn)題回憶當(dāng)x→∞、x→+∞、x→-∞時(shí)的函數(shù)極限是如何定義的.我們可否用類似的思想和方法研究x→x0時(shí)的函數(shù)極限.◆定義1:一般地,當(dāng)自變量x取正值并無(wú)限增大時(shí),函數(shù)f(x)的值無(wú)限趨近于一個(gè)常數(shù)a,就說(shuō)當(dāng)x趨向于正無(wú)窮大時(shí),函數(shù)f(x)的極限是a.lim()
2025-08-15 20:29