【總結(jié)】數(shù)學(xué)與計(jì)算科學(xué)學(xué)院實(shí)驗(yàn)報(bào)告實(shí)驗(yàn)項(xiàng)目名稱Eular方法求解一階常微分方程數(shù)值解所屬課程名稱偏微分方程數(shù)值解實(shí)驗(yàn)類型驗(yàn)證性實(shí)驗(yàn)日期20
2025-07-24 00:27
【總結(jié)】第三章微分方程模型一、微分方程知識(shí)簡(jiǎn)介我們要掌握常微分方程的一些基礎(chǔ)知識(shí),對(duì)一些可以求解的微分方程及其方程組,要求掌握其解法,并了解一些方程的近似解法。微分方程的體系:(1)初等積分法(一階方程及幾類可降階為一階的方程)(2)一階線性微分方程組(常系數(shù)線性微分方程組的解法)(3)高階線性微分方程(高階線性常系數(shù)微分方程解法)。其中還包括了常微分方程的基本定理。
2025-06-24 22:55
【總結(jié)】課程設(shè)計(jì)說(shuō)明書(論文)第I頁(yè)常微分方程組初值問(wèn)題數(shù)值解的實(shí)現(xiàn)和算法分析摘要本次課程設(shè)計(jì)主要內(nèi)容是用改進(jìn)Euler方法和四階Runge-Kutta方法解決常微分方程組初值問(wèn)題的數(shù)值解法,通過(guò)分析給定題目使用Matlab編寫程序計(jì)算結(jié)果并繪圖然后區(qū)別兩種方法
2025-01-11 03:32
【總結(jié)】演示課件之三微分方程解的性態(tài)演示實(shí)驗(yàn)一、Lorenz微分方程模型實(shí)驗(yàn)?zāi)康淖寣W(xué)生觀察常微分方程組解的某些特征,從而揭示其中的數(shù)學(xué)規(guī)律和奧妙!著名的Lorenz微分方程模型:假定參數(shù)分別取值為:β=8/3,σ=10,ρ=28
2024-10-04 14:58
【總結(jié)】用分離變量法解常微分方程.1直接可分離變量的微分方程=()的方程,稱為變量分離方程,這里,分別是的連續(xù)函數(shù).如果(y)≠0,我們可將()改寫成=,這樣,變量就“分離”,得到 通解:=+c. ()其中,c表示該常數(shù),,分別理解為,()()的解.例1求解方程的通解.解:(1)變形且分離變量:(2)兩邊積分:,得.
2025-07-25 08:19
【總結(jié)】常微分方程初值問(wèn)題的數(shù)值解法第6章引言在實(shí)際問(wèn)題中,常需要求解微分方程(如發(fā)電機(jī)轉(zhuǎn)子運(yùn)動(dòng)方程)。只有簡(jiǎn)單的和典型的微分方程可以求出解析解,而在實(shí)際問(wèn)題中的微分方程往往無(wú)法求出解析解。常微分方程:????????0)(),(yaybxayxfy-(1)??????????
2025-05-15 07:53
【總結(jié)】1(三)偏微分方程的數(shù)值離散方法?有限差分法?有限體積法?(有限元,譜方法,譜元,無(wú)網(wǎng)格,有限解析,邊界元,特征線)2有限差分法?模型方程的差分逼近?差分格式的構(gòu)造?差分方程的修正方程?差分方法的理論基礎(chǔ)?守恒型差分格式?偏微分方程的全離散方法
2025-07-17 12:48
【總結(jié)】常微分方程課程教學(xué)大綱(OrdinaryDifferentialEquation)課程性質(zhì):學(xué)科基礎(chǔ)課適用專業(yè):信息與計(jì)算科學(xué)先修課程:數(shù)學(xué)分析、高等代數(shù)、普通物理后續(xù)課程:微分方程數(shù)值解總學(xué)分:3教學(xué)目的與要求:微分方程是數(shù)學(xué)理論聯(lián)系實(shí)際的重要渠道之一,也是其它數(shù)學(xué)分支的一個(gè)綜合應(yīng)用場(chǎng)所,我們所研究的方程多數(shù)是由其它學(xué)科(如物理、氣象、生態(tài)學(xué)、經(jīng)濟(jì)學(xué))推
2025-08-22 20:44
【總結(jié)】機(jī)動(dòng)目錄上頁(yè)下頁(yè)返回結(jié)束高階線性微分方程解的結(jié)構(gòu)第七節(jié)二、線性齊次方程解的結(jié)構(gòu)三、線性非齊次方程解的結(jié)構(gòu)一、二階線性微分方程舉例第十二章n階線性微分方程的一般形式為方程的共性為二階線性微分方程.例1例2,)()()(xfyxqyxpy?
2025-05-10 16:10
【總結(jié)】用分離變量法解常微分方程重慶師范大學(xué)涉外商貿(mào)學(xué)院數(shù)學(xué)與數(shù)學(xué)應(yīng)用(師范)2012級(jí)3班鄧海飛指導(dǎo)教師申治華摘要變量可分離的方程是常微分中一個(gè)基本的類型,分離變量法是解決微分方程的初等解法。本文研究了變量分離方程的多種類型和解法,通過(guò)適當(dāng)?shù)淖兞刻鎿Q把方程化為變量分離方程,例如齊次方程、線性方程、Riccati方程。并且通過(guò)相應(yīng)的例題具體演繹分離變量法解微分方程。最后本文
2025-08-05 01:06
【總結(jié)】微分方程的基礎(chǔ)知識(shí)與練習(xí)(一)微分方程基本概念:首先通過(guò)一個(gè)具體的問(wèn)題來(lái)給出微分方程的基本概念。(1)一條曲線通過(guò)點(diǎn)(1,2),且在該曲線上任一點(diǎn)M(x,y)處的切線的斜率為2x,求這條曲線的方程。 解(1)同時(shí)還滿足以下條件:時(shí),(2) 把
【總結(jié)】這一部分里,我們將看到以下內(nèi)容?幾個(gè)典型物理問(wèn)題及其數(shù)學(xué)描述(微分方程和定解條件)?微分方程的類型?微分方程的邊界條件?微分方程及其邊界條件的等效積分原理幾個(gè)典型的問(wèn)題?弦振動(dòng)問(wèn)題的微分方程及定解條件?傳熱問(wèn)題的微分方程及定解條件?位勢(shì)方程及定解條件弦是一種抽象模型,工程實(shí)際中,可以模擬繩鎖、
2025-05-15 04:17
【總結(jié)】Matlab解常微分方程的初值問(wèn)題以下類容來(lái)源于:精通matlab-張易華;清華出版社;1999年。1:?jiǎn)栴}常微分方程的初值問(wèn)題的標(biāo)準(zhǔn)數(shù)學(xué)表述為:;我們要求解的任何高階常微分方程都可以用替換法化為上式所示的一階形式,其中y為向量,yo為初始值。2:Matlab中解決以上問(wèn)題的步驟(1):化方程組為標(biāo)準(zhǔn)形式。例如:y’’’-3y’’-y’y
2025-01-14 21:16
【總結(jié)】OrdinaryDifferentialEquations?一階常微分方程的初值問(wèn)題:?節(jié)點(diǎn):x1x2…xn?步長(zhǎng)為常數(shù)???????00)(),(yxyyxfdxdy1???iixxh?一歐拉方法(
2025-05-17 20:19
【總結(jié)】西南科技大學(xué)理學(xué)院1第五講全微分方程與積分因子三、積分因子法一、全微分方程與原函數(shù)二、全微分方程判定定理與不定積分法四、小結(jié)西南科技大學(xué)理學(xué)院2定義:即(,)(,)(,)duxyMxydxNxydy??(
2024-10-16 21:13