【總結(jié)】定理假設(shè)(1))(xf在],[ba上連續(xù);(2)函數(shù))(tx??在],[??上是單值的且有連續(xù)導(dǎo)數(shù);(3)當(dāng)t在區(qū)間],[??上變化時(shí),)(tx??的值在],[ba上變化,且a?)(??、b?)(??,則有dtttfdxxfba????????)()]([)(.第
2025-04-21 04:54
【總結(jié)】定理假設(shè)(1))(xf在],[ba上連續(xù);(2)函數(shù))(tx??在],[??上是單值的且有連續(xù)導(dǎo)數(shù);(3)當(dāng)t在區(qū)間],[??上變化時(shí),)(tx??的值在],[ba上變化,且a?)(??、b?)(??,則有dtttfdxxfba????????)()]([)(.
2025-01-14 14:36
【總結(jié)】定積分的分部積分公式推導(dǎo)一、分部積分公式例1◆定積分的分部積分法解解原式原式已積出的部分要求值定積分的分部積分法已積出的部分要求值解解原式原式解解原式原式所以所以分部積分過程:解(4)
2025-04-29 00:02
【總結(jié)】2022年5月南京航空航天大學(xué)理學(xué)院數(shù)學(xué)系1第7節(jié)第二型線積分和面積分場(chǎng)的概念對(duì)坐標(biāo)的曲線積分對(duì)坐標(biāo)的曲面積分(LineintegralsandSurfaceintegralsoftheSecondType(Lineintegralswithrespecttox,y,andz)(Su
2025-04-28 23:22
【總結(jié)】高斯求積公式?引言?求積公式?高斯求積公式的系數(shù)和余項(xiàng)?舉例引言n+1個(gè)節(jié)點(diǎn)的插值求積公式的代數(shù)精確度不低于n求積公式,能不能在區(qū)間[a,b]上適當(dāng)選擇n個(gè)節(jié)點(diǎn)x1,x2,……,xn,使插值求積公式的代數(shù)精度高于n?答案是肯定的,適當(dāng)選擇節(jié)點(diǎn),可使公式的精度最高達(dá)到2n+1,這就是所要介紹的
2025-08-04 08:34
【總結(jié)】YANGZHOUUNIVERSITY二、定積分的分部積分法第三節(jié)不定積分機(jī)動(dòng)目錄上頁下頁返回結(jié)束一、定積分的換元法換元積分法分部積分法定積分換元積分法分部積分法定積分的換元法和分部積分法第五章YANGZHO
2025-07-18 06:33
【總結(jié)】一、六個(gè)基本積分二、待定系數(shù)法舉例三、小結(jié)第四節(jié)有理函數(shù)的積分有理函數(shù)的定義:兩個(gè)多項(xiàng)式的商表示的函數(shù)稱之為有理函數(shù).mmmmnnnnbxbxbxbaxaxaxaxQxP?????????????11101110)()(??其中m、n
2025-08-21 12:39
【總結(jié)】上頁下頁鈴結(jié)束返回首頁1第四章不定積分第三節(jié)不定積分的分部積分法主要內(nèi)容:分部積分法上頁下頁鈴結(jié)束返回首頁2第三節(jié)分部積分法與它們對(duì)應(yīng)的是上節(jié)的基本積分
2025-10-10 08:38
【總結(jié)】第三節(jié)分部積分法第四章不定積分的基本積分方法與有理函數(shù)的積分設(shè)函數(shù))(xuu?和)(xvv?具有連續(xù)導(dǎo)數(shù),由兩個(gè)函數(shù)乘積的求導(dǎo)法則??,vuvuuv???????,vu'uvvu????積分得:.duvuvudv????,dxvuuvdxvu'uvdxvu???
2024-12-08 00:53
【總結(jié)】一、問題的提出二、積分上限函數(shù)及其導(dǎo)數(shù)三、牛頓-萊布尼茨公式四、小結(jié)思考題第三節(jié)微積分基本公式變速直線運(yùn)動(dòng)中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運(yùn)動(dòng)中路程為21()dTTvtt?設(shè)某物體作直線運(yùn)動(dòng),已知速度)(tvv?是時(shí)間間隔],[21TT上t的一個(gè)連續(xù)函數(shù),且0)(?tv
2025-08-11 08:39
【總結(jié)】一、問題的提出二、定積分的定義三、存在定理四、幾何意義五、小結(jié)思考題第一節(jié)定積分的概念abxyo??A曲邊梯形由連續(xù)曲線實(shí)例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.一、問題的提出)(xfy?ab
2025-08-21 12:42
【總結(jié)】一、定積分的元素法二、平面圖形的面積第七節(jié)定積分的幾何應(yīng)用三、旋轉(zhuǎn)體的體積四、平行截面面積已知的立體的體積五、小結(jié)回顧曲邊梯形求面積的問題()dbaAfxx??一、定積分的元素法曲邊梯形由連續(xù)曲線)(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍
2025-08-11 16:42
【總結(jié)】一、由邊際函數(shù)求原函數(shù)二、由變化率求總量第八節(jié)定積分的經(jīng)濟(jì)應(yīng)用三、收益流的現(xiàn)值和將來值一、由邊際函數(shù)求原函數(shù)25()7Cxx???0()(0)()dxCxCCxx????0251000(7)dxxx????例1已知邊際成本為,固
【總結(jié)】問題???dxxex解決思路利用兩個(gè)函數(shù)乘積的求導(dǎo)法則.設(shè)函數(shù))(xuu?和)(xvv?具有連續(xù)導(dǎo)數(shù),??,vuvuuv???????,vuuvvu?????,dxvuuvdxvu??????.duvuvudv????分部積分公式一、基本內(nèi)容第四節(jié)不定積分的分部積分法例
2025-07-26 12:18
【總結(jié)】微積分初步孫平制作第5章不定積分主講:孫平微積分初步孫平制作教學(xué)目的:1、理解原函數(shù)與不定積分概念。2、了解不定積分的性質(zhì),熟記積分基本公式。3、熟練掌握不定積分的計(jì)算方法,即直接積分法、換元積分法(湊微分法)和分部
2025-07-21 21:57